

# Hand Protection / Reference Guide

#### Disclaimer

The material on this section is only intended to provide an overview of the chemical protective gloves categories. When selecting a glove, the user must consider that the chemical resistance of a given glove material can vary from one manufacturer to another based on the material thickness. Gloves material must be selected based on the manufacturer's chemical resistance data (glove selection/compatibility chart).

#### **HAZARD**

|                  | TYPE OF GLOVE                                                                                                                                                                                                                                   |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Light Duty       | Cotton, Leather or Kevlar (moving boxes etc)                                                                                                                                                                                                    |
| Medium Duty      | Leather or Kevlar (wood, small pieces of roughed glass, etc)                                                                                                                                                                                    |
| Heavy Duty       | Kevlar (exposure to sharp or jagged metal, glass, box cutters, etc)                                                                                                                                                                             |
| High Temperature | Insulating Gloves                                                                                                                                                                                                                               |
| Low Temperature  | Insulating Gloves                                                                                                                                                                                                                               |
| Cryogenics       | Cryogenic Gloves (must extend above wrist and not have elastic)                                                                                                                                                                                 |
| Electrical       | Use appropriate PPE for high voltage maintenance prescribed through your electrical safety training. See Electrical Protection.                                                                                                                 |
| Chemical         | Choose the appropriate number from the matrix below for your hazard/frequency condition. The corresponding recommendations to the matrix numbers are listed below the chart. Then, consult the Chemical Protective Glove Selection Guide below. |

| Chamical Hazard Class     |        | Frequency of Use | )           |  |
|---------------------------|--------|------------------|-------------|--|
| Chemical Hazard Class     | No Use | Periodic Use     | Routine Use |  |
| Low hazard chemicals      | 1      | 1                | 1           |  |
| Moderate hazard chemicals | 2      | 2                | 3           |  |
| High hazard chemicals     | 3      | 3                | 4           |  |

### MATRIX NUMBER:

- 1. Use glove which provides dexterity (choice of material is no important).
- 2. Use glove which provides dexterity needed (consider permeation and degradation rating of glove against chemical). Gloves rated "r" are minimally acceptable.
- 3. Use glove effectiveness against chemical as primary consideration. Gloves which are rated as R for 8 hours are minimally acceptable.
- 4. Use glove effectiveness against chemical as primary consideration. Gloves which are rated as RR for 8 hours are minimally acceptable. Seek methods to reduce chemical contact time with glove.

Never immerse gloves in chemical baths - Gloves should be used to provide splash protection only to the greatest extent possible. See chemical Protective Glove Selection Guide below.

#### **CHEMICAL PROTECTIVE GLOVE SELECTION GUIDE**

#### **RECOMMENDATION KEY**

#### Letters R & N

The letter R represents good chemical resistance, while the letter N represents poor chemical resistance.

#### **Letter Case**

Upper case letters indicate consensus and a relatively large amount of information and lower case denote a relatively small amount of information or inconsistencies.

## **Number of Letters**

Double characters indicate test data in support of the recommendation. Single letters show no test data in support of the recommendation.

| Chemical Hazard            | PROTECTIVE MATERIAL |     |                     |                   |          |                   |         |    |     |       |                     |  |
|----------------------------|---------------------|-----|---------------------|-------------------|----------|-------------------|---------|----|-----|-------|---------------------|--|
|                            | Butyl               | СРЕ | Viton /<br>Neoprene | Natural<br>Rubber | Neoprene | Neoprene<br>+ PVC | Nitrile | PE | PVC | Viton | Butyl /<br>Neoprene |  |
| Acetaldehyde               | RR                  | NN  |                     | NN                | NN       | NN                | NN      | NN | NN  | NN    |                     |  |
| Acetic Acid                | R                   | RR  | =                   | nn                | RR       | nn                | RR      | nn | NN  | RR    |                     |  |
| Acetic Anhydride           | RR                  | RR  |                     | NN                | nn       |                   |         |    | NN  | n     |                     |  |
| Acetone                    | RR                  | NN  |                     | NN                | NN       | nn                | NN      | NN | NN  | NN    |                     |  |
| Acetonitrile               | RR                  | RR  | nn                  | NN                | NN       |                   | NN      | NN | NN  | RR    | RR                  |  |
| Acrylic Acid               | r                   |     |                     |                   |          |                   |         |    | n   |       |                     |  |
| Acrylonitrile              | n                   | nn  |                     | N                 | r        | n                 | n       | NN | N   | n     |                     |  |
| Ammonium<br>Hydroxide      | R                   | r   |                     | RR                | RR       | NN                | RR      | NN | NN  | r     |                     |  |
| Amyl Alcohol               | RR                  |     | r                   | NN                | RR       | NN                | nn      | nn | NN  | RR    | r                   |  |
| Aniline /<br>Benzamine     | RR                  | r   | RR                  | NN                | NN       | NN                | nn      | NN | NN  | NN    | RR                  |  |
| Benzaldehyde               | RR                  | n   | n                   | nn                | nn       | n                 | nn      | NN | N   | RR    | r                   |  |
| Benzene                    | NN                  | nn  | RR                  | NN                | NN       | NN                | NN      | NN | NN  | nn    | RR                  |  |
| Benzoyl Chloride           | RR                  | n   | r                   |                   | nn       |                   |         |    | NN  | nn    | n                   |  |
| Butanol / Butyl<br>Alcohol | R                   | r   |                     | nn                | RR       | nn                | RR      | RR | nn  | r     |                     |  |
| Butoxyethanol (EGBE)       |                     |     | r                   |                   |          |                   | NN      |    | RR  |       | n                   |  |
| Butyraldehyde              | nn                  |     | n                   | R                 | nn       | r                 | r       |    | R   | nn    | r                   |  |
| Carbon Disulfide           | NN                  | NN  |                     | N                 | N        | n                 | NN      | NN | N   | RR    |                     |  |
| Carbon<br>Tetrachloride    | N                   | nn  | r                   | NN                | NN       | NN                | N       | NN | NN  | RR    | n                   |  |
| Chloroacetone              | r                   |     | n                   | n                 | R        | n                 |         |    | N   |       | r                   |  |
| Chloroform                 | N                   | NN  | r                   | NN                | NN       | n                 | NN      | NN | NN  | RR    | n                   |  |
| Chromic Acid               | n                   | r   |                     | NN                | N        | RR                | N       | RR | RR  | r     |                     |  |
| Cumene                     |                     | RR  | r                   |                   |          |                   |         |    |     |       | n                   |  |
| Cyclohexane                | RR                  | n   | n                   |                   |          |                   | nn      |    | n   | nn    | n                   |  |
| Cyclohexanol               | n                   | r   | r                   | NN                | NN       | nn                | RR      | RR | RR  | RR    | r                   |  |

| Chemical Hazard                 | Butyl                                                           | СРЕ | Viton /<br>Neoprene | Natural<br>Rubber | Neoprene  | Neoprene<br>+ PVC | Nitrile | PE        | PVC      | Viton | Butyl /<br>Neoprene |
|---------------------------------|-----------------------------------------------------------------|-----|---------------------|-------------------|-----------|-------------------|---------|-----------|----------|-------|---------------------|
| Cyclohexanone                   | RR                                                              | n   | n                   |                   |           |                   | nn      |           | n        | nn    | n                   |
| Dibenzyl Ether                  | r                                                               |     | n                   | N                 | R         | r                 | r       |           | R        |       | r                   |
| Dichlorobenzene                 | n                                                               | nn  |                     |                   |           |                   |         |           | n        |       |                     |
| Diethanolamine                  | RR                                                              |     |                     | n                 | RR        | n                 | nn      |           | r        | RR    |                     |
| Diethylamine                    |                                                                 | •   | •                   | •                 | Silver S  | hield Glo         | ve = RR |           |          | •     | •                   |
| Dimethyl<br>Formamide<br>(DMF)  | RR                                                              |     |                     | nn                | NN        | n                 | NN      | nn        | N        | NN    |                     |
| Dimethyl<br>Sulfoxide<br>(DMSO) |                                                                 | RR  |                     | RR                | RR        | RR                | nn      | RR        | NN       |       |                     |
| Dioctyl Phthalate (DOP)         |                                                                 |     |                     | n                 | r         | nn                |         | NN        | nn       |       |                     |
| Dioxane                         | RR                                                              | r   |                     | NN                | NN        | n                 | NN      | NN        | NN       | NN    |                     |
| Epichlorohydrin                 | RR                                                              | n   |                     | NN                | nn        |                   | nn      | NN        | NN       | nn    | nn                  |
| Ethanolamine                    | RR                                                              | r   | n                   | RR                | RR        | RR                | RR      | RR        | RR       | n     | n                   |
| Ethoxyethanol (EGEE)            | RR                                                              |     | r                   | NN                | NN        |                   | NN      |           | NN       |       | n                   |
| Ethyl Acetate                   | RR                                                              | nn  | n                   | NN                | NN        | nn                | NN      | NN        | nn       | n     | n                   |
| Ethyl Ether                     |                                                                 |     | Polyvinyl <i>i</i>  | Alcohol           | (cannot b | e used in         | process | es involv | ing wate | er)   |                     |
| Ethylene<br>Dichloride          | nn                                                              | nn  | r                   | NN                | NN        | n                 | NN      | NN        | NN       | RR    | n                   |
| Ethylene Oxide<br>Gas           | r                                                               | r   |                     |                   | n         |                   | NN      |           | n        | n     |                     |
| Ethylene Glycol                 | R                                                               | r   | r                   | RR                | RR        | RR                | RR      | RR        | nn       | r     | r                   |
| Formaldehyde                    | RR                                                              | RR  | r                   | NN                | NN        | nn                | NN      | RR        | NN       | RR    | r                   |
| Formic Acid                     | R                                                               | r   |                     | R                 | R         | R                 | r       | NN        | R        | n     |                     |
| Furfural                        | RR                                                              | r   | n                   | NN                | NN        | nn                | NN      | NN        | N        | RR    | r                   |
| Glutaraldehyde                  | RR                                                              |     |                     |                   | RR        |                   |         |           | RR       | RR    |                     |
| Heptane                         |                                                                 |     |                     | NN                | nn        | RR                | RR      | RR        | NN       | RR    |                     |
| Hexane                          | NN                                                              | RR  |                     | NN                | NN        | NN                | NN      | NN        | NN       | RR    |                     |
| Hydrazine                       | RR                                                              | n   |                     | r                 | RR        |                   | RR      |           | RR       | n     |                     |
| Hydrobromic<br>Acid             | r                                                               |     |                     | r                 | R         | r                 |         |           | R        |       |                     |
| Hydrochloric<br>Acid            | nn                                                              | RR  | RR                  | RR                | RR        | RR                | RR      |           | NN       | RR    | RR                  |
| Hydrofluoric<br>Acid            | nn                                                              | r   | RR                  | N                 | N         | n                 | n       | RR        | NN       | RR    | RR                  |
| Mercury                         |                                                                 |     | r                   |                   | r         |                   |         |           | r        |       | r                   |
| Methyl<br>Cellosolve            | RR                                                              |     |                     | n                 | R         | r                 | nn      |           | R        |       |                     |
| Methyl Ethyl<br>Ketone (MEK)    | RR                                                              | nn  | NN                  | NN                | NN        | NN                | NN      | NN        | NN       | NN    | NN                  |
| Methyl lodide                   | nn                                                              |     |                     | NN                | NN        |                   | NN      | NN        |          | RR    |                     |
| Methyl<br>Methacrylate          | Polyvinyl Alcohol (cannot be used in processes involving water) |     |                     |                   |           |                   |         |           |          |       |                     |

| Chemical Hazard                         | Butyl | CPE | Viton /<br>Neoprene | Natural<br>Rubber | Neoprene   | Neoprene<br>+ PVC | Nitrile  | PE   | PVC | Viton | Butyl /<br>Neoprene |
|-----------------------------------------|-------|-----|---------------------|-------------------|------------|-------------------|----------|------|-----|-------|---------------------|
| Methylene<br>Chloride                   | NN    | nn  | r                   | NN                | NN         | nn                | NN       | NN   | NN  | nn    | N                   |
| Morpholine                              | RR    |     |                     | nn                | N          | r                 | NN       |      | n   | RR    |                     |
| Nitric Acid                             | n     | RR  | RR                  | n                 | RR         | nn                | n        | RR   | NN  | RR    | RR                  |
| Nitrobenzene                            | RR    | RR  |                     | NN                | NN         | n                 | NN       |      | N   | RR    |                     |
| Nitrotoluene                            |       |     |                     |                   | r          |                   |          |      | r   |       |                     |
| PCB                                     | nn    | n   |                     | NN                | RR         |                   |          | NN   | n   | RR    |                     |
| Pentachlorophenol                       |       |     |                     |                   | NN         |                   | RR       |      | RR  |       |                     |
| Perchloric Acid                         | r     |     | r                   | N                 | RR         | RR                | RR       | RR   | RR  | r     | r                   |
| Perchloroethylene / Tetrachloroethylene | NN    | RR  | r                   | NN                | NN         | NN                | nn       | N    | NN  | RR    | n                   |
| Phenol / Carbolic<br>Acid               | R     | nn  |                     | NN                | nn         | n                 | NN       | RR   | NN  | n     |                     |
| Phosphoric Acid                         | r     |     |                     | RR                | RR         | RR                | RR       | RR   | RR  |       |                     |
| Potassium<br>Hydroxide                  | r     |     |                     | R                 | R          | r                 | R        |      | R   | n     |                     |
| Propyl Alcohol                          | r     |     | r                   | nn                | RR         | NN                | RR       | NN   | nn  | r     | r                   |
| Propylene Oxide                         | RR    |     | n                   | NN                | n          | n                 | n        | NN   | n   | NN    | n                   |
| Sodium Hydroxide                        | n     | RR  |                     | R                 | R          | RR                | R        | RR   | RR  |       |                     |
| Sodium<br>Hypochlorite (30-<br>70%)     |       |     |                     | RR                | RR         | RR                | RR       |      | RR  |       |                     |
| Styrene                                 | n     | RR  | r                   | NN                | NN         | NN                | NN       | NN   | NN  | r     | n                   |
| Sulfuric Acid                           | n     | RR  | RR                  | N                 | RR         | nn                | n        | RR   | NN  | RR    | RR                  |
| Tannic Acid                             | R     | r   |                     | R                 | R          | RR                | R        | RR   | RR  | r     |                     |
| 1,1,2,2-<br>Tetrachloroethane           | nn    | n   |                     | NN                | NN         |                   | nn       | NN   | NN  | RR    |                     |
| Tetrahydrofuran<br>(THF)                |       |     |                     | <u>-</u>          | Teflon = R | R, all oth        | ers NN c | or n |     |       |                     |
| Toluene                                 | NN    | r   | RR                  | NN                | NN         | nn                | NN       | NN   | NN  | NN    |                     |
| Toluidine                               |       |     | 1                   |                   | -          | Teflon = R        | RR       |      |     | _     |                     |
| 1,1,2-<br>Trichloroethane               | nn    |     |                     | NN                | NN         |                   | NN       | NN   | NN  | RR    |                     |
| Triisooctyl<br>Phosphate                |       |     | r                   |                   |            |                   |          |      |     |       | r                   |
| Triethanolamine                         |       | RR  | n                   |                   | nn         |                   | RR       |      | NN  | RR    | n                   |
| Trinitrotoluene                         | n     |     |                     | N                 | N          | r                 |          |      | R   |       |                     |
| Vinyl Chloride                          | n     | RR  |                     |                   |            |                   | NN       |      | n   | RR    |                     |
| Xylene                                  | n     | n   | r                   | NN                | NN         | NN                | NN       | NN   | NN  | RR    | n                   |

CPE = Chlorinated Polyethylene

PE = Polyethylene

PVC = Polyvinyl Chloride

The information here has been selected from the third edition of 'Guidelines for the Selection of Chemical Protective Clothing' published by the American Conference of Governmental and Industrial Hygienists, Inc in February 1987.