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Abstract 

Most of the data mining methods in real-world intelligent 
systems are attribute-based machine learning methods such 
as neural networks, nearest neighbors and decision trees.  
They are relatively simple,- efficient, and can handle noisy 
data. However, these methods have two strong limitations: 
(1) the background knowledge can be expressed in rather 
limited form and (2) the lack of relations other than 
“object-attribute” makes the concept description language 
inappropriate for some applications.   
 
Relational and hybrid data mining methods based on 
first-order logic are compared with Neural Networks 
and other benchmark methods on different data sets.  
These computational experiments show several 
advantages of relational and hybrid methods.  
 

1. Problem definition and objectives  

Relational Data Mining (RDM) combines inductive logic 
programming (ILP) with probabilistic inference. The 
combination benefits from noise robust probabilistic 
inference and highly expressive and understandable first-
order logic rules employed in ILP. 
Data mining has two major sources to infer rules: database 
and machine learning technologies.  The field of machine 
learning is concerned with the question of how to construct 
computer programs that automatically improve with 
experience. In recent years many successful machine 
learning applications have been developed, ranging from 
data-mining programs that learn to detect fraudulent credit 
card transactions, to information-filtering systems that 

learn users’ reading preferences, to autonomous vehicles 
that learn to drive on public [6,8]  
 
Currently statistical and Artificial Neural Network 
methods dominate in design of intelligent systems and data 
mining. Alternative relational (symbolic) machine 
learning methods had shown their effectiveness in 
robotics (navigation, 3-dimensional scene analysis) and 
drug design (selection of the most promising components 
for drug design). Traditionally symbolic methods are used 
in the areas with a lot of non-numeric (symbolic) 
knowledge. In robot navigation this is relative location of 
obstacles (on the right, on the left and so on). We discuss 
the key algorithms and theory that form the core of 
symbolic machine learning methods for applications with 
dominating numerical data.  
 
Relational Data Mining (RDM) technology is a data 
modeling algorithm that does not assume the functional 
form of the relationship being modeled a priori.  It can 
automatically consider a large number of inputs (e.g., time 
series characterization parameters) and learn how to 
combine these to produce estimates for future values of a 
specific output variable. Most of the data mining methods 
are attribute-based machine learning methods such as 
neural networks, nearest neighbors and decision trees.  
They are relatively simple, efficient, and can handle noisy 
data. However, these methods have two strong limitations: 
(1) the background knowledge can be expressed in rather 
limited form and (2) the lack of relations makes the 
concept description language inappropriate for some 
domains [1].  The purpose of a new area of machine 
learning called Inductive Logic Programming (ILP) is to 
overcome these limitations. Logic programming provided 
the solid theoretical basis for ILP. On the other hand at 
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present existing ILP systems are relatively inefficient and 
have rather limited facilities for handling numerical data 
[1]. We developed a hybrid ILP and probabilistic 
technique that handles numerical data efficiently [3,9]. 
  
One of the main advantages of ILP over attribute-based 
learning is ILP’s generality of representation for 
background knowledge. This enables the user to provide, 
in a more natural way, domain-specific background 
knowledge to be used in learning. The use of background 
knowledge enables the user both to develop a suitable 
problem representation and to introduce problem-specific 
constraints into the learning process. By contrast, attribute-
based learners can typically accept background knowledge 
in rather limited form only [1].  

 

2. Comparison of problem requirements and 
method capabilities 

 
Dhar and Stein [2] introduced a unified vocabulary for 
matching computational intelligence problems and 
methods. A problem is described using a set of 
requirements (problem ID profile). A method is described 
using its capabilities in the same terms.  In [2] this 
vocabulary was applied for describing and comparing 
several data mining methods.  Neural Networks (NN) are 
the most common methods in data mining.  There are three 
shortages of NN for forecasting related to: (1) 
explainability, (2) use of logical relations and (2) 
tolerance for sparse data. Table 1 presents wider 
comparison of different data mining methods including 
Neural Networks.   

3. Relational methods  
 
A machine learning type of method, called Machine 
Methods for Discovering Regularities (MMDR) is 
applied for forecasting time series.  The method 
expresses patterns in first order logic and assigns 
probabilities to rules generated by composing 
patterns. Currently the majority of learning systems 
for applications concentrate on neural networks, 
genetic algorithms, and related techniques. In 
practice, learning systems based on first-order 
representations have been successfully applied to 
many problems in chemistry, physics, medicine and 
other fields [1,6]. 
 
As any technique based on first order logic, MMDR 
allows one to get human-readable forecasting rules 
[1,6,8], i.e. understandable in ordinary language in 
addition to the forecast. A field expert can evaluate 

the performance of the forecast as well as a 
forecasting rule.  
 
Also, as any technique based on probabilistic 
estimates, this technique delivers rules tested on their 
statistical significance. Statistically significant rules 
have advantage in comparison with rules tested only 
for their performance on training and test data [6, ch. 
5].  Training and testing data can be too limited 
and/or not representative. If rules rely only on them 
then there are more chances that these rules will not 
deliver a right forecast on other data. 
 
What is the motivation to use suggested MMDR 
method in particular?  MMDR uses hypothesis/rule 
generation and selection process, based on 
fundamental representative measurement theory [5]. 
The original challenge for MMDR was the simulation 
of discovering scientific laws from empirical data in 
chemistry and physics. There is a well-known 
difference between “black box” models and 
fundamental models (laws) in modern physics. The 
last ones have much longer life, wider scope and a 
solid background. 
 
In this paper we study several types of 
hypotheses/rules presented in first-order logic.  They 
are simple relational assertions with variables. 
Mitchell [6] noted the importance that relational 
assertions “can be conveniently expressed using 
first-order representations, while they are very 
difficult to describe using propositional 
representations” (pp.275, 283-284).  
 
Many well-known rule learners such as AQ, CN2 are 
propositional [6,7]. Note that decision tree methods 
represent a particular type of propositional 
representation [6, p.275]. Therefore decision tree 
methods as ID3 and its successor C4.5 fit better to 
tasks without relational assertions. Mitchell argues 
and gives examples that propositional representations 
offer no general way to describe the essential 
relations among the values of the attributes [6, pp. 
283-284]. Below we follow his example. In contrast 
with propositional rules, a program using first-order 
representations could learn the following general 
rule:  
 
IF Father(x,y) & Female(y), THEN Daugher(x,y),  
 
 where x and y are variables that can be bound to any 



person. For the target concept Daughter1,2 
propositional rule learner such as CN2 or C4.5,  the 
result would be a collection of very specific rules 
such as  
 
IF (Father1=Bob)&Name2=Bob)&Female1=True) 
THEN Daughter1,2=True. 
 
Although it is correct, this rule is so specific that it 
will rarely, if ever, be useful in classifying future 
pairs of people [6, pp.283-284]. We show that the 
close problem exists for ARIMA and Neural 
Networks methods. First-order logic rules have an 
advantage in discovering relational assertions because 
they capture relations directly, e.g., Father(x,y) in the 
example above. 
 
In addition, first order rules allow one to express 
naturally other more general hypotheses not only the 
relation between pairs of attributes [3]. These more 
general rules can be as for classification problems as 
for an interval forecast of continuous variable. 
Moreover these rules are able to catch Markov chain 
type of models used for time series forecast. We 
share Mitchell’s opinion about the importance of 
algorithms designed to learn sets of first-order rules 
that contain variables. “This is significant because 
first-order rules are much more expressive than 
propositional rules” [4, p.274].  
 
What is the difference of other machine learning 
methods dealing with first-order logic [4, 5] and 
MMDR?   From our viewpoint the main accent in 
other first-order methods [4, 5] is on two 
computational complexity issues: how wide is the 
class of hypotheses tested by the particular machine 
learning algorithms and how to construct a learning 
algorithm to find deterministic rules. The emphasis of 
MMDR is on probabilistic first-order rules and 
measurement issues, i.e., how we can move from a 
real measurement to first-order logic representation. 
Note that recently Muggleton’s team moved to the 
same probabilistic direction. This is a non-trivial task 
[3]. For example, how to represent temperature 
measurement in terms of first-order logic without 
losing the essence of the attribute (temperature in this 
case) and without inputting unnecessary conventional 
properties?  For instance, Fahrenheit and Celsius 
zeros of temperature are our conventions in contrast 
with Kelvin scale where the zero is a real physical 
zero. There are no temperatures less than this zero.  

Therefore incorporating properties of the Fahrenheit 
zero into first-order rules may force us to 
discover/learn properties of this convention along 
with more significant scale invariant forecasting 
rules. Learning algorithms in the space with those 
kind of accidental properties may be very time 
consuming and may produce inappropriate rules.  
 
 It is well known that the general problem of rule 
generating and testing is NP-complete. Therefore the 
discussion above is closely related to the following 
questions. What determines the number of rules and 
when to stop generating rules? What is the 
justification for specifying particular expressions 
instead of any other expressions? Using the approach 
from [3] we select rules which are simplest and 
consistent with measurement scales for a particular 
task.  
 
The algorithm stops generating new rules when they 
become too complex (i.e., statistically insignificant 
for the data) in spite of possible high accuracy on 
training data. The obvious other stop criterion is time 
limitation. Detailed discussion about a mechanism of 
initial rule selection from measurement theory [3] 
viewpoint is out of the scope of this paper. A special 
study may result in a catalogue of initial 
rules/hypotheses to be tested (learned) for particular 
applications. In this way any field analyst can choose 
rules to be tested without generating them. This paper 
delivers a preliminary list of rules for that catalogue.  
 
The critical issue in applying data-driven forecasting 
systems is generalization.  The "Discovery" system 
generalizes data through “lawlike” logical 
probabilistic rules.  Discovered rules have similar 
statistical estimate and significance on training and 
test sets of studied time series. Theoretical 
advantages of MMDR generalization are presented in 
[6, 2]. We use mathematical formalisms of first order 
logic rules described in [5, 3].  
 

4 Method for discovering regularities 
 
Figure 1 describes the steps of MMDR. On the first 
step we select and/or generate a class first–order logic 
rules suitable for a particular task.  
 
The next step is learning the particular first-order 
logic rules using available training data. Then we test 



first-order logic rules on training and test data using 
Fisher statistical criterion. After that we select 

MMDR models
(selecting/generating  logical rules 

with variables x,y,..,z:
IF A(x,y,…,z)THEN B(x,y,…,z)

Learning logical rules on training 
data  using conditional

probabilities of inference 
P(B(x,y,…,z)/A(x,y,…z))

Creating interval and threshold 
forecasts using rules 

IF A(x,y,…,z) THEN B(x,y,…,z) 
and p-quintiles

Testing and selecting 
 logical rules (Occam’s 
razor, Fisher criterion)

Figure 1. Flow diagram for MMDR: steps and technique applied

 
statistically significant rules and apply Occam’s razor 
principle: prefer the simplest hypothesis (rules) that 
fits the data [4, p. 65]. Simultaneously we use the 
rules’ performance on training and test data for their 
selection. We may iterate back and forth among these 
three steps several times to find the best rules. The 
last step is creating interval and threshold forecasts 
using selected first-order logic rules:   
 

IF A(x,y,…,z) THEN B(x,y,…,z).  
 
Conceptually law-like rules came from philosophy 
of science. These rules attempt to mathematically 
capture the essential features of scientific laws:  
(1) High level of generalization;  
(2) Simplicity (Occam’s razor); and,  
(3) Refutability.   
 
The first feature -- generalization -- means that any 
other regularity covering the same events would be 
less general, i.e., applicable only to the part of events 
covered by the law-like regularity. The second 
feature – simplicity--reflects the fact that a law-like 
rule is shorter than other rules. The law-like rule (R1) 
is more refutable than another rule (R2) if there are 
more testing examples which refute (R1) than (R2), 
but the examples fail to refute (R1). 

 
Formally, we present an IF-THEN rule C as  
 

A1& …&Ak ⇒ A0, 
 
where the IF part, A1&...&Ak, consists of true/false 
logical statements A1,…,Ak ,and the THEN part 

consists of a single logical statement A0. Statements 
Ai are some given refutable statements or their 
negations, which are also refutable. Rule C allows us 
to generate sub-rules with a truncated IF part, e.g.  
 

A1&A2 ⇒ A0 , A1&A2&A3 ⇒ A0 
 
and  so on. For rule C its conditional probability  
 

Prob(C) = Prob(A0/A1&...&Ak) 
 
is defined. Similarly conditional probabilities  
 

Prob(A0/ Ai1&...&Aih) 
 
are defined for sub-rules Ci of the form  
 

Ai1& …&Aih ⇒ A0. 
 
We use conditional probability  
 

Prob(C) = Prob(A0/A1&...&Ak) 
 
for estimating forecasting power of the rule to predict 
A0.  
 
The rule is “law-like” iff all of its sub-rules have 
less conditional probability than the rule,  and 
statistical significance of that is established.  Each 
sub-rule Ci generalizes rule C, i.e., potentially Ci is 
true for larger set instances  [19, chapter 10]. Another 
definition of “law-like” rules can be stated in terms of 
generalization.  
 
The rule is “law-like” if and only if it can not be 
generalized without producing a statistically 
significant reduction in its conditional probability.   
 
“Law-like” rules defined in this way hold all three 
mentioned above properties of scientific laws: 
generality,  simplicity, and  refutability..  
The “Discovery” software searches all chains 
 

C1 , C2, …, Cm-1, Cm 
 
of nested “law-like” subrules, where C1 is a subrule 
of rule C2 , C1 = sub(C2),  C2 is a subrule of rule C3, 
C2 = sub(C3) and finally Cm-1 is a subrule of rule Cm, 
Cm-1 = sub(Cm).  In addition, they satisfy an important 
property: 
 



Prob(C1) < Prob(C2), … , Prob(Cm-1) < Prob(Cm). 
 
This property is the base for the following  
theorem [9]:  
 

All rules, which have a maximum value of 
conditional probability, can be found at the end of 
such chains.  

 
This theorem basically means that the MMDR 
algorithm does not miss the best rules. The algorithm 
stops generating new rules when they become too 
complex (i.e., statistically insignificant for the data) 
even if the rules are highly accurate on training data. 
The Fisher statistical criterion is used in this 
algorithm for testing statistical significance. The 
obvious other stop criterion is time limitation. 
 
Theoretical advantages of MMDR generalization are 
presented in [3,4,9]. This approach has some 
similarity with the hint approach [20]. We use 
mathematical formalisms of first-order logic rules 
described in [21-23].  Note that a class of general 
propositional and first-order logic rules, covered by 
MMDR is wider than a class of decision trees [19, pp. 
274-275]. 

5.  Performance 
 
We considered a control task with two control actions 
values u=0 and u=1, set as follows: 
 
If yt ~>yt-1 then u=1 else if (yt ~=yt-1then u=0 else u=-

1), 
 
where  yt-1 is an actual value of the time series for t-1 
moment and yt ~ is the forecasted value of y for t 
moment. Forecasted values are generated by all four 
studied methods including Neural Network method 
and relational MMDR method.  
 
The gain function G is computed after all actual 
values of yt for all considered t became known.  Gain 
function G(u, yt ,yt-1)  depends on u and actual values 
of output yt ,yt-1: 
 
G(u, yt ,yt-1)= yt -yt-1 if  u=1 and  -(yt -yt-1) if u=0 
 

The adaptive linear method in essence works 
according to the following fomula:  

yt
~=ay t-1+ byt-2 +c. 

 
If   
“No active control” method ignores forecast yt   

and in all cases generates the same control signal “do 
nothingn”   

If  (yt ~>yt-1  or  yt ~≤yt-1) then u=0 (do nothing)., 

Table 1 shows performance of MMDR in conparison 
with three other methods: Adaptive linear, passive 
contol, and neural networks. In avarage human-
readable and understadable regularities generated 
MMDR autperformed other methods including 
widely used  neural networks.  

Table 1.  Simulated gain  

Gain (%) Method 
Data      
set 1 
(456 

instances) 

Data    
set 2 
(456 

instances)

Average 
(two data 
sets, 856 
instances)

Adaptive Linear 21.9 18.28 20.09 
MMDR 26.69 43.83 35.26 
No active control 30.39 20.56 25.47 
Neural Network  18.94 16.07 17.5 
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Table 2. Comparison of capabilities of methods 
Dimension NN CBR FL DR ST DT  ILP PILP

1 Accuracy H  MH H  MH  MH H  H 
2 Explainability L M M H MH MH H H 
3 Response 

speed 
H MH H LM MH H H H 

4 Scalability M H M M MH MH M M 
5 Compactness H LM H L  M M M 
6 Flexibility H H H M LM  H H  
7 Embeddability H M M L H MH MH MH 
8 Tolerance for 

complexity 
H M H L LM  M LM LM 

9 Tolerance for 
noise in data  

MH M   LM  M L H 

10 Tolerance for 
sparse data 

L M    L L H 

11 Independence 
from experts 

H MH M L H M M H 

12 Development 
speed  

M  M MH  M M M 

13 Used 
computing 
resources 

LM  L   M M M 

14 Ease of use M  M    M M 
15 Ease of use of 

logical 
relations  

LM L M H  L H H 

16 Ease of use of 
numerical  
data  

H H H LM  H LM LM 

 
The white part of table 3 is based on tables presented in [2]. We generated the rest part to show the importance of first-order 
logic methods.  
Notation: 
NN--neural networks; CBR--case-based reasoning; 
FL—fuzzy logic; DR—deductive reasoning (expert systems) 
ST—statistical methods; DT--decision trees 
ILP—inductive logic programming 
PILP—probabilistic ILP;   
H—high; M—medium; L—low. 
 


