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Medicine is a science of uncertainty The problem of identifying cases sus
and an art of probability picious for breast cancer using
—Sir William Osler (c.1904) mammographic information about clus
here are several modern approaches féered calcifications is considered here.
knowledge discovery in the medicalExamples of mammographic images with
field, some of which have originated in clustered calcifications are shown in Figs.
the artificial intelligence area. In this arti- 1-3. Calcifications are seen in most mam
cle, we discuss the application of thesenograms and commonly indicate the
methods for medical diagnosis, using feapresence of benign fibrocystic change.
tures extracted from mammograms. WeHowever, certain features can indicate the
describe a method that can be used to dipresence of malignancy. These figures
cover a consistent set of logical diagnosticlemonstrate the broad spectrum of ap-
rules for breast cancer diagnosis. Thespearances that might be present within a
rules may serve as the core of a comprenmammogram.
hensive computer-aided diagnostic sys- Figure 1 shows calcifications that are
tem, which has the ultimate purpose ofrregular in size and shape. These are bi-
providing a second diagnostic opinion.opsy-proven, malignant-type
Consistency of the system means thatalcifications. Figure 2 presents a cluster
there are no contradictions among rules inf calcifications within a low-density,
acomputer-aided diagnostic system, ruled|-defined mass. Again, these
used by an experienced radiologist, and ealcifications vary in size, shape, and elen
database of pathologically confirmedsity, suggesting that a cancer has -pro
cases. We have developed a method fatuced them. Finally, Fig. 3 is an example
discovering a consistent set of diagnostiof a carcinoma, which has produced a
rules, and we show advantages of théigh-density nodule with irregular
method for development of a breast eanspiculated margins. While there are
cer computer-aided diagnostic system. calcifications in the area of this cancer,
they are all nearly spherical in shape and
Overview: Breast Cancer Diagnosis  quite uniform in their density. This high
and Knowledge Discovery degree of regularity suggests a benigr ori
In the US, breast cancer is the mos@in. At biopsy, the nodule proved to be a
common female cancer [1]. The most ef cancer, while the calcifications were asso
fective tool in the battle against breastciated with a benign fibrocystic change.
cancer is screening mammography. How  There is promising computer-aided di
ever, it has been found that intra- andagnostic research aimed to improve the
interobserver variability in situation [3-8]. Knowledge discovery in
mammographic interpretation is signifi medical diagnosis includes two major
cant (up to 25%) [2]. Additionally, several steps: (S1) extracting diagnostic features
retrospective analyses have found erroand (S2) extracting diagnostic rules based
rates ranging from 20% to 43%. Thesedn these features.
data clearly demonstrate the need te im  Typical knowledge discovery research
prove the reliability of mammographicin in breast cancer diagnosis includes:
terpretation. » (C1) a few hundred data units,
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= (C2) about a dozen diagnostic fea In this article, we concentrate on thestances, X, the most likely conclusion is

tures given or extracted fromimages,extraction of rules from an expert andY. But if an additional fact, say F, were
« (C3) knowledge discovery process{fom a collection of data and then attemppresent, the more likely conclusion might

(KD process) to |d_ent|fy contradlqtlons. If_ rule extrac be P.” If a problem |S‘decomposaple,”
Neural networks. nearest neighbort'o.n |s_p¢rfo_rr_ned without th_ls purpose |nwhe.re.the interactions among varlable.s
methods discrimina,nt analysis clusterm'n.d’ it is difficult to recognize a contra are I.|rr'1|ted and experts can artu;ulate their
analysis ’Iinearprogramming ana geneti((;Ilctlon.AIso_,rulesgenerated t_)yan expertlecision process w!th confldence_, a
algorithrﬁs are among the mlost commor?nd data-driven rules may be mcorr_lpleter,ule-based approach is a good candidate
knowledge discovery tools. Data miningas thgy may cover only_ as_mall frac_tlo_n c_nfand the system may scale well .[10].
in other fields tends to use larger datapo_SS|bIe feature (_:o_mblnatl_ons. This I+_m| We have developeqan effective mech
bases and discover larger sets of rules u%ﬁ“on may make |t.|mposs[ble to conﬁrm anism fo_r _decomposmon and_to exploit
ing these techniques. At the same time atrules are consistent with an availablenonotonicity so as to make this problem
mammography archives at hospital database. Additional new cases o.r-_featractable.. . _
around the world contain millions of%ures can make thg contradictions v.|5|blle. Creating a cqn3|stent rule base in
mammograms and biopsy results, CurThere.fore, thg majorproblem here isdiscludes _the_ following s_teps: _
rently, the American College of Radiol covering sufficient, complete, and cem 1. Finding d_ata-drlven rulesot dis-
ogy &ACR) supports the National parabl.e sets of expert rulgs 'a.nd:overed by qskmg an expert.
Mammography Database (NMD) Prc)jectdata-drlven.rules.Completeness is critical 2._ Analysis of these new rules by a
(http://www.eskimo.com/~briteoo/nmd) for comparison. For example, supposenedical expert using available proven
with a unified set of features [9)]. Severalthat an expert and data-driven rul_es covetases. A list of these cases from the data
universities and hospitals have develope nly 3% of possible feature combinationshase can be presented to an expert. The ex
mammography image bases that are avai?cas_es_) and assume that there are ne copert can check: .
able on the Internet. Such efforts provid radlcyon_s between these rules. Then, = Is a new rule discovered because of
the opportunity for large-scale data minet.he“.a is still plenty of room for contracic misleading cases The rule may be
ing and knowledge discovery for breastio" I the remaining 97% of the cases. [:Ledcégd and training data can be ex

; : Lo ; We are developing methods to dis- : ) o
i bUsness applcations have ehow that 0Ver Complete sefs of expert ules and + Does he rleonimexisting expert
large database can be a source of usefflpta-driven rules. This objective presents nfc_’f:"’ienge i ir aF;S nteerrj ?}:Nas;l_o
rules, but the useful rules may be accomys With an exponential nontractable prob- suthciently transparent for the €
S ! . ; : ; pert. The expert may find that the rule

panied by larger set of irrelevant or incor- €M Of extracting diagnostic rules. A 17 0l BT T o previous
rect rules. A great deal of time may bePute-force method may require asking o orience but he/she would like
required for experts to select onlythe expert thousands of questions. Such a

dialog Ik blem f ' more evidence. The rule can increase
nontrivial rules. In this article, we address@!al09 IS @ Well-known problem Tor exper the confidence of his/her practice.

this problem by offering a method of rule System development [10]. For example,  peq the rulddentify new relation-
extraction consistent with expert opin-Tor 11 binary diagnostic featlires of clus-  ghingthat were not previously known
ions. tered calcifications, there are'{z 2048) to the expert? The expert can find that

Traditional expert systems rely on-di feature combinations, each representinga the rule is promising.

agnostic rules extracted from experts_newcase.Abrute-force methodwouldre 3 Finding rules that areontradictory

Systems based on machine-learning tectfi4!'® questioning a radiologist on each ofg his/her knowledge or understanding.
niques rely on an available databases fdf'€S€ 2048 combinations. ~ Rules express the interconnections of the
discovering diagnostic rules. These two Arelatedproblemisthat, in attemptingfeatures presented within training cases.
sets of rules may contradict each other. A0 @nalyze a complex system, experts mayhis means that there are two possibili
radiologist may not trust rules, as the ind |_td|ff|cult or impossible to artl_culate ties:
may contradict his/her rules and experi confidently the large number of interac . The rule was discovered using mis
ence. Also, a radiologist may have questions among features. For such problems,  leading cases. This rule must be re
tionable or incorrect rules, while the datalt Pecomes increasingly impractical to  jected and training data must be
and image base may have questionable §Pnduct knowledge acquisitionandtoex  extended. _ _
incorrect records. These contradictiondract meaningful rules. In general experi = The expert can admit that his/her
make the design of a computer-aideel di€"Ce. about 6010 70% of the time takento  ideas have no real basis. The system
agnostic system extremely complex. ~ develop rule-based systems is spent on _IMproves expert experience.

There are two tasks: knowledge acquisition. Thus, knowledge T_h|s article is based on and extends our

) - engineering to extract hundreds of rulegrevious research [11-18].
' (Tl) ldem'fy contradictions among becomes the bottleneck in the process. . .
diagnostic rules. Perhaps the most important reason for Method For Discovering

= (T2) eliminate contradictions. considering an expert system approach toDiagnostic Rules From a Database

If the first task is solved, the seconda problem is that a rule-based system ap A machine-learning method, called
one can be approached by cleaning the rgproach seeks to behave like an expert. inachine methods for discovering regular
cords in the database, adding more-feaxhibits the “feel” of an expert and can-ex ities (MMDR) [18], can be applied for the
tures, using more sophisticated ruleplain and justify a conclusion. The expertdiscovery of diagnostic rules for breast
extraction methods, and testing the componders alternative scenarios, and thusancer diagnosis. The method expresses
petence of a medical expert. might say: “I think that under the circum patterns in first-order logic and assigns
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probabilities to rules generated by com “law-like” rules can be stated in terms of restoration [12]. One can ask a radiologist
posing patterns. Learning systems basegeneralization. The rule is “law-like” if it to evaluate a particular case when a Rum
on first-order representations have beenannot be generalized without producinger of features take on a set of specific-val
successfully applied to many problems ima statistically significant reduction in its ues. A typical query will have the
chemistry, physics, medicine, financeconditional probability. “Law-like” rules following format:
and other fields [11-14,18]. As with any defined in this way hold all three proper  “If feature 1 has value Y feature 2 has
technique based on logic rules, this techties of scientific laws. They are (1) generalvalue V,,..., feature n has value Vthen
nique allows one to obtaihuman-read from alogical perspective, (2) simple, andshould biopsy be recommended or not?
able forecasting rules that are(3) refutable. Below, we present some “Or, does the above setting of values
interpretable in medical language and alsoules extracted using this approach. correspond to a case suspicious of cancer
provides a diagnosis [19]. A medical spe  The “discovery” software searches allor not?"
cialist can evaluate the correctness of thehains G, C,, ..., G, C, of nested Each setof values (YV,,...,V,) repre
diagnosis as well as the diagnostic rule‘law-like” subrules, where Cis a subrule sents a possible clinical case. It is practi
The critical issue in applying data-drivenof rule C,, C, = sub(G), C,is a subrule of cally impossible to ask a radiologist to
forecasting systems is generalizationrule C;, C,=sub(G), and finally G,,isa generate diagnoses for thousands of-pos
MMDR and related “discovery” software subrule of rule G, C,,., = sub(G,). Also, sible cases. A hierarchical approach eom
systems [18] generalize data througlProb(G) < Prob(G), ..., Prob(G,.;) < bined with the use of the property of
“law-like” logical probabilistic rules. Prob(G,). There is a theorem [17] that all monotonicity makes the problem man
Conceptually, law-like rules come rulesthat have amaximum value of condiageable.
from the philosophy of science. Thesetional probability can be found at the end We construct a hierarchy ofiedically
rules attempt to mathematically captureof such chains. The algorithm stops generinterpretablefeatures from a very gener
the essential features of scientific lawsating new rules when they become toalized level to a less generalized level.
(1) high level of generalization, (2) sim complex (i.e., statistically insignificant This hierarchy follows from the defini
plicity (Occam’s razor), and (3) for the data), even if the rules are highlytions of the 11 medically oriented binary
refutability. The first feature—general accurate on training data. The Fisher staattributes. The medical expert indicated
ization—means that any other regularitytistical criterion is used in this algorithm that the original 11 binary attributes,w
covering the same events would be lesfor testing statistical significance. The ob-w,, Wy, Y1, Y5, V3, Ya: Vs: Xs, X4, Xs, CcOUld be
general; i.e., applicable only to a subset ofious other stop criterion is time limita- organized in terms of a hierarchy, with de-

events covered by the law-like regularity.tion. velopment of two new generalized attrib-
The second feature—simplicity—reflects  Theoretical advantages of MMDR utes x% and %:
the fact that a law-like rule is shorter thangeneralization are presented in [12], [17] Level 1 Level 2
otherrules. The law-like rule (R1) is moreand [18]. This approach has some similar- (5 Attributes) (All 11 Attributes)
refutable than another rule (R2) if thereity with the hint approach [20]. We use  x, 7 W, Wy, Wy
are more testing examples that refute (R1nathematical formalisms of first-order  x, 7 Y, Yor Yar Var Vs
than (R2) but the examples fail to refutelogic rules described in [21]-[23]. Note  x, 7 X
(R1). that a class of general propositional and x, 7 X

Formally, we presentan IF-THEN rule first-order logic rules covered by MMDR  x, 7 %

CasA&..&A O A, where the IF part, iswiderthanaclass ofdecisiontrees[19]. We consider five binary featureg,x.,
A&...&A, consists of true/false logical Figure 4 describes the steps ofx,, x,, and %, on level 1. A new general
statements A...,A, and the THEN part MMDR. In the first step, we select and/orized feature:
consists of a single logical statemeng. A generate a class of logical rules suitable
Statements Aare some given refutable for aparticular task. The nextstepislearn x, — “Amount and volume of
statements or their negations, which aréng the particular first-order logic rules calcifications”
also refutable. Rule C allows us to generusing available training data. Then we test
ate subrules with a truncated IF part; e.gfjrst-order logic rules on training data-us with grades (0 - “benign” ath 1 - “can
A&A, O Ay, A&AL&A O Ay, and so ing the Fisher statistical criterion. After cer”) introduced based on features:
on. that we select statistically significant rules
For rule C, its conditional probability and apply Occam’s razor principle: the  w, — number of calcifications/ctn
Prob(C) = Prob(4/A&...&A,) is de  simplesthypothesis (rule) thatfitsthedata  w, —volume of calcification/crhand
fined. Similarly, conditional probabilities is preferred [19]. The last step is creating  w,— total number of calcifications.
Prob(A/A1&...&A ;) are defined for interval and threshold forecasts using se
subrules Qofthe form A,&...&A ;0 A,.  lected logical rules: IF A(x,y,...,z) THEN We view x as a function/(w,, w,, w,) to
We use conditional probability, BXy.....2). be identified.

Prob(C) = Prob(4/A,&...&A ), for esti . . . Similarly, a new feature:
mating forecasting power of the rule to Method for Extracting Diagnostic

predict A, The rule is “law-like” if all of Rules from Medical Experts X,— “Shape and density of calcifica
its subrules have a statistically significant tion”
lower conditional probability than the Hierarchical Approach

”

rule. Each subrule @eneralizes rule C;  The interview of a radiologist to ex with grades (1) for “marked” or “cancer
i.e., potentially, Gis true for alarger set of tract rules is managed using an originaind (0) for “minimal” or “benign,” gener
instances [19]. Another definition of method of monotone Boolean functionalizes features:
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y, — “lrregularity in shape of individ X, — {shape and density of 2)“Biopsy is not necessary.”

ual calcifications” calcifications}, with: 0-“benign,”1-“can The Diagnosis Subproblem (P2):
y, — “Variation in shape of cer Similarly as above, one and only one of
calcifications” X3 — {ductal orientation}, with: 0 - the following two disjoint outcomes is
ys — “Variation in size of ‘benign”1-“cancer” possible. That is, a given case is:
calcifications” X,— {comparison w. previous exami 1) “Suspicious for malignancy” or
y, — “Variation in density of nation}, with: 0 - “benign,” 1-“cancer” 2) “Not suspicious for malignancy.”
calcifications” xs — {associated findings}, with: 5y goal here is to extract the way the

0-“benign,"1-“cancer.” system operates in the form of two

discriminant Boolean functions,dnd f;:

We view x, as a function x= Y(y,, Y., ¥s, To understand how monotonicity is 1. Fl.Jn.CtIO.n“{ returns true 1) vallﬂe if
the decisionis “biopsy is necessary,” false

Y. ¥e) 1o be identified for cancer diagho applied to the breast cancer problem,-con

si.s. The described structure is presented D der the evaluation of calcifications in a(O) otherwise.
Fig. 5. 2. Function § returns true (1) value if

. mammogram. Given the above defini L2 . .
A_s_lmllar structure was produced forations, we can represent clinical cases irtlhe def:lsmn is “suspicious for malig
decision regardlng biopsy. The expertwas, s of binary vectors with five general nancy, _false (0)_othferW|se. .
requested to review both the structure anifed features as (o Xs X4 Xs). Next, con The first function is related to the first
answers for the questions: sider the two clinical cases that areSUPProblem, while the second function is
» “Can function f be assumed the represented by the binary sequence®latedtothe secondsubproblem. Thereis
same for both problems?” (10110) and (10100). If one is given that 2" important relation between
. “Can function § be assumed the radiologist correctly diagnosed (10100)SuPproblems P1 and P2 and functions
same for both problems?” as a malignancy, then, by utilizing thef:(a), f(a). The problems are nested; i.e.,
The expert indicated that these twoproperty of monotonicity, we can alsolf the case is suggestive of cance&) =
functions,y andy, should be common to conclude that the clinical case (10110)) then biopsy should be recommended
both problems: (P1) recommendation bisShould also be amalignancy. This concluéfy(ar) = 1) for this case, thereforg(fr) = 1
opsy and (P2) cancer diagnosis. ThereSIOn IS based on the systematic coding of] f,(a)=1. Also, if biopsy is not recom-
fore, the following relation is true @ll features “suggestive for cancer” as 1.mended (f(a)=0) then the case is not sug-
regarding theffori=1,2) and the twapy ~ OPServethatin (10100) we had twoin-gestive of cancer {fa)=0), therefore
andy functions: dications for cancer: . ~ fy(@)=00 fy(a) = 0. The last two state-
» X3 = 1 (ductal orientation having ments are equivalent tg(fr) = f,(a) and

value of 1; suggesting cancer) and f .
a) <f,(a), respectively, for case. Let
«x; = 1 (Amount and volume of 1(o) < (@), respectively

ys — “Density of calcifications”

Monotonicity

fi(xl!XZ’X3lX4rx5) =

fi() (W1, Wo, W), calcifications with value 1 indicating = 18 aset ofx sequences fromy=such
VY1V YaYaYe), cancer). _that fl(a2 = _l (biopsy positive cases). Sim-
X3,X4,Xs), | = 1,2. In the second clinical case, we havdlany, E'n.isasetofisequences fromf

these two observations for cancer and als8uch thatf(a) = 1 (cancer positive cases).

Further levels of hierarchy can be-de X,= 1 (a comparison with previous exami Observe that the nested property formally
veloped for better describing the problemnations suggesting cancer). In the sam@€ans that £, O E n (for all cases sug
For examp|e’ y(“irregmarity in shape of Mmanner, if we know that (01010) is notgestive of cancer, blOpsy should be +ec
individual calcifications”) may be found considered suspicious for cancer, then themmended) and(a) =f,(a) for all LE,
in three grades: “mild” (or), “moderate” case (00000) should also not be corsid The previous two inter-related
(ort,) and “marked” (or§). Next, observe eredsuspicious. Thisistrue because in thsubproblems, P1 and P2, can be formu
that it is possible to change (i.e., generalsecond case we have less evidence-indiated as a restoration problem of two
ize) the operations used in the functiorfating the presence of cancer. The aboveested monotone Boolean functions, f
considerations are the essence of how oand f. A medical expert was presented
algorithms function. They can combinewith the ideas of monotonicity and nested
_ logical analysis of data with monotonicity functions, as above, and he felt comfort
Wy1Y2r--.¥5) _ylg_‘ DyS&yf‘&yF” where and can generalize accordingly. In thisable with the idea of using nested meno
&andUare the binary, logical operations,yay the weaknesses of the brute-forcéone Boolean functions. Moreover, the
for "AND” and “OR." respectively. Then, ‘methods can be avoided. dialogue that followed confirmed the va
&and[lcan be substituted for one of their |t js assumed that if the radiologist-be lidity of this assumption. Similarly, the
multivalued logic analogs; for example, Xjieves that the case is malignant, thedunction % = W(Y1, Vo Vs Ya Ys) fOT X,
&y =min(x,y) and xOy =max(x,y), asin he/she will recommend a biopsy. More(“Shape and density of calcification”) was
fuzzy logic (see, for example, [11]). This formally, these two subproblems are-deconfirmed to be a monotone Boolean
decomposition is presented in Fig. 5.  fined as follows: function.

We assume thatxs the number and  The Clinical Management A Boolean function is a compact pre
the volume occupied by calcifications, inSubproblem (P1): One and only one of sentation of the set of diagnostic rules. A
a binary setting, as follows: (0-“againstthe following two disjoint outcomes is Boolean discriminant function can be pre
cancer,”1-"for cancer”). Similarly, let:  possible: sented in the form of a set of logical

1) “Biopsy is necessary” or IF-THEN rules, butitis not necessary that

W(Y1.Ya--,Ys). FOr instance, we may have
mentioned functiony as follows:
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these rules stand for a single tree, as in thRather, it depends on the previous- anducing two two-dimensional Hansel
decision-tree method. A Boolean functionswers of a medical expert; therefore, eacbhains:

can produce a diagnostic discriminansubsequent question is defined dynami  New chain 1: (00) < (01) < (11) and
function that cannot be produced by thecally, asillustrated in Table 1. Columns 2, New chain 2: (10).

decision-tree method. For example, the3, and 4 present values of the above-de Tp;g process continues and stops in the
biopsy subproblem is stated as: fined functions, £, f,, and y (see the fifth dimension for <x, X,, X3, X,, Xs> and

£1(%) = xoxa 0 x1x2 O x2xa O x3 Oxs. (1) “Hlerarghlcal Apprqach” sect|o_n above).<y, v, v. v, y->. Table 1 presents the-re

, ) We omit a restoration of functiof(w,, sult of this process. The chains are nrum
This formula is read as follows: W,, W) because few questions are needefered there from 1to 10, and each case has
to restore this function, but the generalts numberinthe chain;e.g., 1.2 means the
scheme is the same as farff, andy, with  second case in the first chain. Asterisks in
consideration of all binary triples such ascolumns 2, 3, and 4 mark answers-ob
(010), (110), and so on. In Table 1, thetained from an expert; e.g., 1* for case
first question is: “Does the sequencg01100)in column 3 means that the expert
(01100) represent a case requiring a bianswered “yes.” The remaining answers
. .. opsy?” Here, x0 and (01100) = (¥ x,, for the same chain in column 3 are auto

IF (shape and density of calcifications, 'y vy if the answer is “yes” (1), then matically obtained using monotonicity.
suggests cancer AND comparison Withne next question will be about biopsy forThe value f(01100) = 1 for case 1.1 is ex
previous examination suggests cancefne case (01010). Ifthe answer is “no” (0)tended for cases 1.2, 6.3, and 7.3 in this
OR (the number and the volume occupiegyap, the next question will be about-bi way. Similarly, values of the third moro
by calcifications suggests cancer ANDy,qy for (11100). This sequence of questone Boolean functiong are computed

Zgzgecggge?)eggt({hcgncl?rlrfg;?r?;fh:%glﬁons is not accidental. As mentioneduysingthe Table 1. (The attributes inthe se
i o above, it is inferred from the Hansel i
ume occupied by calcifications suggest quence (10010) are interpreted 3s y,

femma [11]. All 32 possible cases with i

. X - . Ya, Yar Ysinstead of X, X,, X5, X4, X5 used for

gigﬁﬁ;g’:g Siomggrslscznn(\:/‘\g:)h Opée(\(/jlﬁgf five binary features ( X,, X3, X4, Xs) @are  f, and f,. The Hansel chains are the same
. . 99 Presentedincolumn 1 of Table 1. They arexs long as the number of attributes is the

orientation suggests cancer) OR (associ:

N ~grouped, and the groups are called Hansglhme, five in this case).
ated findings suggests cancer) THEN Bi=, _. . ; ’
opsy is rec%mmge?\ded. ) chains. The sequence of chains begins Columns 5 and 6 list cases for extend-

from the shortest chain [#1—(01100) andng function values without asking an ex-

, : . (11100)]. This chain consists of two or-pert. Column 5 is for extending function
Figure 6 presents the major steps iye e cases, (01100) < (11100 for five biyajues from 1 to 1, and column 6 is for ex-

rule extraction from a medical expert: (1), a1y features. Then the largest chain, #1Qending them from 0to 0. If an expert were
de;/?:]op a hlerarcr;y c;f concetpts agd Firesc'onsists of six ordered cases: (00000) o give an answer oppositg(®1100) = 0)
f8unnctioenn; ?Z)a:essior?e erg?:uoog?ﬁeseo ?uii'?OOOM) <(00011) < (00111) < (01111) <o that presented in Table 1 for function f
tions with a minimal sequence of ques (11111). Similarly, the cases are ordere@nd case 1.1 (01100), then this 0 value
tions to an expert, (3) combine discovered'> vectors in each chain. could be extended in column 2 for cases
functions intoacc;mplete diagnostic func __ 1 © construct the chains presented iry.1 (00100) and 8.1 (01000). These cases
tion, and (4) present the complete functiony 2ple 1 (with five dimensions such as x are listed in column 6 for case (01100).
as é tradrnona' set of s|mp|e d|agnost|cx27 XSV X4’ .)(50ry11 y2’.y31 y41 y5)asequent|a| There iS no need to aSk an eXpeI’t about
rules:If A and B and...F then.Z processis used. First, all one-dimensionajases 7.1 (00100) and 8.1 (01000) be
Next, we describe step (2)—restoringcnins (in B) are generated, and then theycause monotonicity provides the answer.
are used to generate chains of higher diThe negative answey(D1100) = 0 cannot

each of monotone Boolean functions with ; X o
minimal sequence of questions for the ex"€NsIoNs, up to dimension five. Each stefpe extended for,{11100). An expert
pert (Fig. 7). of chain generation consists of using Curshould be queried regarding £1100). If
The last block (2.5) in Fig. 7 provides "€ i-dimensional chains to generaténis/her answer is negativg(11100) = 0,
for interviewing an expert with a minimal (+1)-dimensional chains. The generationthen this value can be extended for cases
dynamic sequence of questions. This s¢2 chains for the next dimension (i+1)is a5.1 and 3.1 listed in column 6 for case 1.2.
quence is based on the fundamental Har||V&-Step “clone-grow-cut-add” process.Relying on monotonicity, the value of f
sel lemma [11,24]. We omit a detailed'V€ Clone an i-dimensional chain; e.g.for these cases will also be 0.
description of the specific mathematical@ving one-dimensional chain (0) < (1) The total number of cases with an-as
steps, which can be found in [11]. The"® produce its copy: (0) < (01). Then Weterisk (*) in column 1 is equal to 13, and
general idea of these steps is given usingr©W these chains, adding the second dkor columns 3 and 4 they are, respectively,

IF (x,AND x,) OR (x, AND X,) OR (¥,
AND x,) OR (%) OR (%) THEN Biopsy is
recommended

In medical terms this translates as:

an example of the interactive session ifnension, but differently: 13 and 12. These numbers show that 13
Table 1. A minimal sequence of questions  Chain 1: (00) < (01) questions are needed to restore each of f
means that we reach the minimum of the Chain 2: (10) < (11). and £, as functions of x X,, X3, X4, Xs and

Shannon Function [11]; i.e., a minimalHere, 0 is added to the left of both cases ithat 12 questions are needed to restore as a
number of questions is required to restorehain 1; and 1 is added to the both cases ifunction of y;, Y,, Vs, Va4, ¥s. This is only

the most complex monotone Boolearchain 2. 37.5% of 32 possible questions and 60%
function withn arguments. This sequence Next, we cut the head case (11) fromof a possible maximum generated by the
is not a sequence written in advancechain 2 and add itas a head to chain 1;prdHansel lemma.
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Full restoration of either one of func discovered rules with their statistical sig analysis gives an equation that separates
tions f, and f with 11 arguments (see nificance. benign and malignant classes. For exam
above) without any optimization ofthein  Figure 8 presents results for anotheple, 0.0670x-0.9653%+... represents a
terview process would have required up taelection criterion: level of conditional case. How would one interpret a weighted
2"=2,048 calls (membership inquires) toprobability. We studied three levels: 0.7,number of calcifications/cfn(0.0670x)
the medical expert. Note that practically0.85, and 0.95. A higher level of condi plus a weighted volume (cij i.e.,
all studies in breast cancer cem tional probability decreases the number 00.9653%? There is no direct medical
puter-aided diagnostic systems derive dirules and diagnosed patients but increaseense in this arithmetic.
agnostic rules using significantly less tharaccuracy of diagnosis. Results are marked
1000 cases [25]. However, according taas MMDR1, MMDR2, and MMDR3. We  Rules Extracted from the Expert
the Hansel lemma and under the assumgxtracted 44 statistically significant diag
tion of monotony, an optimal (i.e., amini nostic rules for the 0.05 level of F-crite Examples of Extracted
mal) dialogue for restoring a monotonerion with a conditional probability no less Diagnostic Rules
Boolean would require at most: than 0.75 (MMDR1). There were 30 rules  Below, we present examples of rules

a10 oo with a conditional probability no less than discovered using the technique described
E E+ H H: 2% 462= 924 0.85 (MMDR2), and 18 rules with a cen above.
S 6 ditional probability no less than 0.95 EXPERT RULE (ER1):
(MMDR3). The total accuracy of diagro IF NUMBER of calcifications per cn

calls to a medical expert. This new valueg '\ - “a504 The false negative rate wa@Vv,) is large

is 2.36 times smaller than the previous UPg 505 (nine malignant cases were diag AND TOTAL number of calcifications

per limit of 2048 calls. However, even this d beni d the fal itivaws) is large

upper limit of 924 calls can be reducednose as benign), an .t € laise posmv_ 3 "9 T -

further. The hierarchy presented in Fi gate was 11.9% (16 benign cases were di  AND wrg_gulgnty. In SHAPE of indi
: rchy p 9 23gnosed as malignant). The most reliablgidual calcificationss marked

reduces the maximum number of ques

. i % THEN suspicious for malignancy.
tions needed to restore monotone Boolea:r31O rules delivered atotal accuracy of 90%, P 9 y

functions of 11 binary variables to 72 and the 18 most reliable rules performed
questions (non determ?’mstic questioning}ith 96.6% accuracy with only three falseEXPERT RULE 2 (ER2):

. ositive cases (3.4%). IF NUMBER of calcifications per cn
andto 46 using the H_ansel lemma. The ac- Neural network software (W,) large
tual.numb.er of questions aSked.WaS abo%t‘Brainmaker " California Scientific AND TOTAL number of calcifications
40, including both nested functions (can- n .
cer and bio - . Software) had given 100% accuracy onis large (w)
psy) described below, (i.e..>~ " ¢ . . f
about 20 questions per function). training data, but for the round-robin test, AND variation in SIZE o
the total accuracy fell to 66%. The maincalcifications(y,) is marked
. . . reason for this low accuracy is that neural  AND VARIATION in Density of
DIS(O\I{?:III:‘QGDI;Z%:;;?;; Rules networks do not evaluate the statisticaFalcifications(y,) is marked _
significance of the perfect performance AND DENSITY of calcificatiorfys) is
The next task is the discovery of rules(100%) on training data. Poor resultsmarked
from data. This study was accomplisheq76% on training data test) were also-ob THEN suspicious for malignancy.
using an extended set of features. The s@ined with linear discriminant analysis
of features listed in the “Hierarchical Ap (“SIGAMD” software, StatDialogue EXPERT RULE 3 (ER3):
proach” section was extended with twoSoftware, Moscow, Russia). The decilF (SHAPE and density of calcifications
featuresLe Gal typeanddensity of paren  sjon-tree approach (“SIPINA” software, are positive for cancer
chyma, with the following diagnostic Université Lumiére, Lyon, France) per ~AND Comparison with previous ex
classes: “malignant,” “benign,” and “high formed with accuracy of 76%-82% onaminationis positive for cancer)
risk of malignancy.” We extracted severaltraining data. This is worse than whatwe OR (the number and the VOLUME oc
dozen diagnostic rules that were statistiobtained for the MMDR method with the cupied by calcificationsre positive for
cally significant on the 0.01, 0.05, and 0.1much more difficult round-robin test (Fig. cancer
levels (F-criterion). 8). The very important false-negativerate  AND SHAPE and density of
Rules were extracted using 156 casewas 3-8 cases (MMDR), 8-9 cases (decicalcifications are positive for cancer)
(73 malignant, 77 benign, two highly sus sion tree), 19 cases (linear discriminant OR (the number and the VOLUME ec
picious, and four with mixed diagnosis).analysis) and 26 cases (NN). In these excupied by calcifications are positive for
In the round-robin test, our rules diag periments, rule-based methods (MMDRcancer AND comparison with previous
nosed 134 cases and refused to diagnosed decision trees) outperformed thexamination is positive for cancer)
22 cases. The total accuracy of diagnosisther methods. OR (DUCTAL orientationis positive
is 86%. Incorrect diagnoses were obtained Note also that only MMDR and deci for cancer ORassociated FINDING&re
in 19 cases (14% of diagnosed cases). Ttaon trees produce diagnostic rules. Thesgositive for cancer)
false-negative rate was 5.2% (seven-maules make a computer-aided diagnosti@HEN Biopsy is recommended.
lignant cases were diagnosed as benigmecision process visible, transparent
and the false-positive rate was 8.9% (1ZDOESN'T MAKE SENSE?) to radiolo Below, we present briefly some other
benign cases were diagnosed as maligyists. With these methods, radiologistextracted rules in formal notation. MAL
nant). Some of the rules are shown inTacan control and evaluate the deci stands for suspicious for malignancy.
ble 2, which presents examples ofsion-making process. Linear discriminant IF  w&y, THEN MAL

6 IEEE ENGINEERING IN MEDICINE AND BIOLOGY July/August 2000



IF w&y, THEN MAL ing functions (interpretation of the not sufficient and that rule DB1 should be

IF w&y& &y ,&ys THEN MAL features is presented below): extracted from the extended database.
IF waws&y, THEN MAL Also, the radiologist can conclude that the
IF W&a&W&X. THEN MAL Xy = V(Wq,Wo,Wa) = Wo W, W5 (3) feature setis not sufficient to incorporate
rule DBR1 into to his knowledge base.
Rule Extraction Through Monotone and This kind of analysis is not possible for
Boolean Functions linear discriminant analysis or neural net
We obtained Boolean expressions for Xy =U(Y1.YoYaYaYs) = VaOoDYaYaYs works. We also use fuzzy logic to clarify
shape and density of calcification, x the meaning of such concepts as “total
W1, Yo Ya Ya ¥s) from the information () number of calcifications (wis large.”
depictedin Table 1 (columns 1 and 4) withBy combining the functions in Eqs. We tested the reliability of the expert
the following steps: (1)-(4), we obtained the formulas of all 11radiologist against 30 actual cases. He
(i) Find all the maximal lower units for features for biopsy: classified these cases into three catego
all chains as elementary conjunctions ries:
(ii) Exclude the redundant terms (con  f,(x) = (y,0y;0yayay=)X,0 1) “High probability of cancer, biopsy
junctions) from the end formula. See-ex (Wo0W, W) (Y, 0y, Dyayaye) O is necessary” (or CB).
pression (2) below. Thus, from Table 1 (W, W2)X, DX X (5) 2) “Low probability of cancer, proba
(columns 2, 4) we obtained: bly benign but biopsy/short term fol
and for suspicious for cancer: low-up is necessary” (or BB).
X=P(Y1s Vor Var Var V) 3) “Benign, biopsy is not necessary”
=Y1Y5Y Y5V oYY YsY1yall £(X) = XXX (T, X)X (or BO).
AP YAVAAR AR AR VAAVA = (W,0W,Wy) These cases were selected from
a0y, oYy ] screening cases repalled for magnification
and then simplified it to y,0y.y.ye. 1727735475 0 3 views of calcifications. For the CB and
As above. from columns 2 and 3 we (Y1LY2LYaYays) BB cases, pathology reports of biopsies
' (WD, W5 )Xs - (6)  confirmed the diagnosis, while a two-year

obtained the initial components of the tar-

getfunctions of x, X,, Xs, X Xs for the bi- follow-up was used to confirm the benign

status of BO.

opsy subproblem as follows: Compurison of Data-Based and The expert’'s diagnosis was in full

Expert Diagnostic Rules agreement with his extracted diagnostic

F16) = XoXal XX 4 X XaLX X[y X Below, we compare some rules exrules for 18 cases, and for 12 cases he
XX 4 XX X5 X5 X5 tracted from 156 cases using data miningsked for more information than that
algorithms and by interviewing the radiol- given in the extracted rule. When he was

and for the cancer subproblem to be deggist. interviewed, he answered that he had
fined as: From the database we extracted theases with the same combination of 11
Fo(X) = XoXgX XX 4 [ X0 [ X 5X 4 rule DBR1: features but with different diagnosis. This

X1 X5 X 3X o[ XX X5 [ X X5 [ X 4 X suggests that we need to extend the feature

IF NUMber of calcifications per ¢ set and the rule set to adequately cover
The simplification of these disjunctive (w,) is between 10 and 20 ANDOLume complicated cases. Restoration of meno

normal form (DNF) expressions allowed(w,) < 5 cn? tone Boolean functions allowed us to

us to exclude some redundant conjunc THEN Malignant identify this need. This is one of the useful

tions. For instance, inx¢he term yy, is outputs from these functions.

not necessary becausgegpvers it. Thus, The closest expert rule is ER1: We extracted from the database the

the right-hand side of Egs. (1) to (4) forms following rule (DBR2):

the minimal disjunctive normal form  IF NUMber of calcifications per cfn

DNFs. (w,) large AND TOTal number of IF variation in SIZE of calcificationis
Using this technique, we extracted 16€calcifications(ws) is large moderate ANDvariation in SHAPE of

rules for the diagnostic class “suspicious AND irregularity in SHAPE of indi  calcifications is mildAND IRRegularity

for malignancy” and 13 rules for the classvidual calcificationgy;) is marked in shape of calcifications is mildHEN

“biopsy” [see Egs. (5) and (6) below for ~ THEN Malignant Benign This rule was confirmed by the

mathematical representation]. All these database of 156 actual cases using the

rules are obtained from Eg. (6). There is no DBR1 rule among the-ex round-robin test. We extracted from this

WHERE/WHAT ISEQUATION 1? pert rules, but this rule is statistically sig database all cases for which thisrule is ap
Similarly, for the second subproblemnificant (0.01, F-criterion). Rule DBR1 plicable; i.e., cases where the variation in
("highly suspicious for cancer”) the func should be tested by the radiologist and inSIZE of calcificationss moderate; varia
tion that we found was: cluded in the diagnostic knowledge baseion in SHAPE of calcificationss mild;

F2(X) = xxalXa0 (xolXaKa)Xs (2) after his verification. The same verifica and IRREGULARITY in shape of

2 VA2 AR R4)7S tion procedure should be done for ER1calcificationsis mild. For 92.86% of these
Regarding the second level of the hierarThis rule should be analyzed against theases, the rule is accurate. The expert also
chy (which, recall, has 11 binary featuresidatabase of real cases. This analysis mayad a rule with these premises, but the ex
we interactively constructed the follew lead to the conclusion that the database igert rule included two extra premises:
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ductal orientation is not present and thereliction. We applied two complimentary has been awarded several international
are no associated findings [see Eg. (6)]intelligent technologies for extraction of and Russian research grants. Dr. Vityaev
This suggests that the database should beles and recognition of their contradic isamember of the program committees of
extended to determine which rule is eor tions. The first technique is based on-disa number of international conferences and
rect. covering statistically significant logical has been successful in the application of
diagnostic rules. The second technique i§oMputer technology to medical deci
Radiologists Comments Regarding based on the restoration of a monoton&lON-making problems in collaboration
Rules Extracted from Database ~ Boolean function to generate a minimalV/ith Drs. Kovalerchuk and Ruiz.

DB RULE 1: dynamic sequence of questions to a medi

IF TOTAL number of calcifications >30 cal expert. The results of this mutual veri James F. Ruizs a staff
AND VOLUME >5 cnt fication of expert and data-driven rules radiologist at the
AND DENSITY of calcificationds demonstrate feasibility of the approach Woman’s Hospital in

moderate for designing consistent computer-aided Baton Rouge, LA. Dr.

THEN Malignant. diagnostic systems. Ruiz has a B.S. in bio
F-criterion-significant for 0.05. chemistry from Louisi
Accuracy of diagnosis for test cases = Boris Kovalerchukis a ana State University

100%. professor of computer and earned his M.D. de
Radiologist's Comment: This rule science at Central gree at Tulane Univer

sity. Dr. Ruiz is a member of the

_rmght have promise, but | would consider Washlngton.Unlversny, American College of Radiology, the Ra
it risky. USA. Previously, he 7 ) ) .
i diological Society of North America, the
was a visiting scholar at ! .
. - . American Roentgen Ray Society, and the
DB RULE 2: several universities in : . ;
o o the US and Europe American Institute of Ultrasound in Med
IF VARIATION in Shape of calcifications p icine. He has pub“shed more than 20 pa

is marked (State University of

AND NUMBER of calcificationss be ﬁ.eWUYC?rk? Foufiar‘"". Statg Ur?“’ersgy?
tween10 and 20 Nz nlver5|ty, Ust”a, and ot erS). r.

. Kovalerchuk earned his M.S. in
A.ND .lRR.EGULARlTY in shape of mathematics from Novosibirsk Univer-
calcificationsis moderate

sity, Russia, and his Ph.D. degree fromth

pers on radiology and use of artificial
intelligence in radiology. Dr. Ruiz has
been successful in the application of com-
puter technology to various medical deci-
gion-making problems in collaboration

THEN Ma."g”a.”t' - Soviet Academy of Sciences. Dr.With Drs. Kovalerchuk and Vityaev.
F-criterion-significant for 0.05. Kovalerchuk is a member of the New
Accuracy of diagnosis for test cases =york Academy of Sciences, INFORMS, Address for CorrespondenceDr. Boris
100%. the International Association of FuzzyKovalerchuk, Department of Computer
Radiologist's comment:lwould trust  Systems, and the Society for ComputeBScience, Central Washington University,
this rule. Applications in Radiology. He has pub-Ellensburg, WA 98926-7520. Tel: +1 509
lished more than 60 papers on artificialo63 1438. Fax: +1 509 963 1449. E-mail:
DB RULE 3: intelligence and information technologyhorisk@tahoma.cwu.edu.
IF VARIATION in SIZE of calcifications and has been awarded several interna
is moderate tional and US research grants. Dr.
AND VARIATION in SHAPE of Kovalerchuk is a member of the program

calcificationsis mild committees of a number of international References

AND IRREGULARITY in shape of conferences, has lectured around th .Wingo PA, Tong T, and Bolden S:Cancer sta

calcificationsis mild Wpl’ld., and has been successful in the @Ristics. Ca - A Cancer Journal for Clinicians
THEN Benian plication of computer technology to medi 45(1): 8-30, 1995,
benign. - cal decision-making problems in
F-criterion-significant for 0.05. llab - ith Drs. Vi dRui 2.Elmore J, Wells M, Carol M, Lee H, Howard
collaboration with Drs. Vityaevand Ruiz. D, and Feinstein A: Variability in radiologists’

Accuracy of diagnosis for test cases = ; :
92.86%. interpretation of mammogramblew England J

Evgenii Vityaevs a Se Med331(22): 1493-1449, 1994.

nior Scientist at the ln 3. Shtern F: Novel digital technologies for im
stitute of Mathematics Proved control of breast cancer. ICAR'96,

of the Russian Acad Computer Assisted Radiology, Proc Int Symp
emy of Science. Previ Computer and Communication Systems for Image

- Guided Diagnosis and Thera . 357-361,
ously, he was a Vvisiting g9 g Pyp

Radiologist’'s comment:l would trust
this rule.

Discussion and Concluding Remarks
The study has demonstrated how €on
sistent data mining in medical diagnosis
. . > scholar at several .
can create a set of logical diagnostic rules universities in the us - Kilcoyne RF, Lear JL, and Rowberg AH

for computer-aided diagnostic systems. . (Eds): Computer applications to assist radiology.
P g Y and Great Britain. Dr. In: SCAR'96, Proc Symp Computer Applications

Consistency av0|ds' contradlctl_or_l amongyjtyaey eamed his M.S. in mathematicSn Radiology Carisbad, CA, 1996(PAGE
rules generated using data mining softfrom Novosibirsk University, Russia, and N\UMBERS?)

ware, rules used by an experienced r?dlohls_ Ph.D. degree from Soviet Academy o5 AUTHORS? SCAR'98, Proceedings of the
ogist, and a database of pathologicallsciences. Dr. Vityaev is a member of sevsymposium for computer applications in radiol
confirmed cases. We identified majoreral scientific societies. He has publishedgy.J Digital Imaging11(3), Suppl., 1998.
problems: to find contradiction betweenmore than 50 papers on artificial intelli 6. AUTHORS? Proc 3rd Int Workshop on Digi
diagnostic rules and to eliminate contragence and information technology and heal MammographyChicago, IL, June 9-12, 1996.
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7.AUTHORS? Proc 4th Int Workshop on Digital - http://www.azn.nl/rrng/xray/digmam/iwdm98/A 2. Low-density, ill-defined mass and as

Mammography Nijmegen, Netherlands, June bstracts/node51.html sociated calcifications.
7-10, 1998. http://www.azn.nl/rrng/xray/ 16. Kovalerchuk B, Ruiz JF, Vityaev E, and 3. Carcinoma producing mass with
digmam/iwdm98/Abstracts/node51.html Fisher S: Prototype Internet consultation systemspiculated margins and associated be

8. Lemke HU, Vannier MW, Inamura K, and for radiologists.J Digital Imaging11(3): 22-26, njgn calcifications.

Farman AG (Eds.): CAR'96, Computer Assisted Suppl., 1998. 4. Flow diagram for MMDR: Steps and
Radiology, Proc Int Symp Computer and Commu1 7 vjityaev EE: Semantic approach to knowl technique applied.

nication Systems for Image Guided Diagnosis and jge pase development: Semantic probabilistig Task decomposition

Therapy Paris, France, June 26-29, 1996. inference. Computer System$46: 19-49, ' (1.0 ctonc 0 e trastion of expert
9. BI-RADS, Breast Imaging Reporting and Datanoyosibirsk, 1992 (in Russian). diagnjc>stic rﬁles p

System. American College of Radiclogy, ReSton’18.Vityaev EE and Moskvitin AA: Introduction 7. Interactive restoration of each fune

VA, 1998. to discovery theory: Discovery software system,.. - :
10. Dhar V and Stein R: Intelligent Decision ¢, mpytational éystemi48: 117-163. donin the hierarchy.

Support MethodsEnglewood Cliffs, NJ: Prentice \qvosibirsk. 1993 (in Russian). 8. Performance of methods
Hall, 1997. ' (round-robin test).

. . . 19. Mitchell T: Machine LearningNew York:
11.Kovalerchuk B and Talianski V: Compari tMcGraw Hill, 1997.

son of empirical and computed fuzzy values o 20. Abu-Mostafa (INITIAL?): L ing CALL-OUTS

conjunction.Fuzzy Sets and Systed®: 49-53, - Abu-Mostaia 7). Learning irom . - .

19912 Y Y hints in neural networksJ Complexity6: The major problem here is discovering
: 192-198, 1990. sufficient, complete, and comparable sets

12. Kovalerchuk B, Triantaphyllou E, and

Ruiz J: Monotonicity and logical analysis of data; 21. Russel S and Norvig P:Artificial Intelli- of expert rules and data-driven rules.

A mechanism for evaluation of mammographicgénce. A Modern ApproactiEnglewood Cliffs, About 60 to 70% of the timg taken to
and clinical data. In: Kilcoyne RF, Lear JL, NJ: Prentice Hall, 1995. develop rule-based systems is spent on
Rowberg AH (Eds):Computer Applications to 22.Halpern JY: An analysis of first-order logic knowledge acquisition.

assist RadiologyCarlshad, CA: Symposia Foun of probability.Atrtificial Intelligence46: 311-350, Arule-based system approach exhibits
dation, pp.191-196, 1996. 1990. the “feel” of an expert and can explain and

13. Kovalerchuk B, Vityaev E, and Ruiz JF: 23, Krantz DH, Luce RD, Suppes P, and justify a conclusion.

Design 0; consistent Syc?_tem for r;diolngi;ts toTversky A: Foundations of Measurementol- Itis practically impossible to ask a ra-
support breast cancer diagnosis. Pnoc Joint - i . . .

Copne Information SciencegsDurham, NC, 2: lig”ge(i 1-3. New York Academic, 1971, 1989'dlologlst to ge.nerate diagnoses for thou-
118-121, 1997. 24. Hansel G: Sur le nombre des fonctions sands of possible cases. S
14.Kovalerchuk B, Triantaphyllou E, Ruiz J,  Bgolenes monotones den variabl&@&R. Acad. The results demons_trat_e feaSIbll_'ty of
and Clayton J: Fuzzy logic in computer-aided s Paris262 (20):1088-1090, 1966 (in French). the approach for designing consistent
breast cancer diagnosi&nalysis of Lobulation, computer-aided diagnostic systems.
Artificial Intelligence in Medicine (VOL-
UME?)(11): 75-85, 1997.

15. Kovalerchuk B, Conner N, Ruiz J, and L
Clayton J: Fuzzy logic for formalization of breast 1+ Clustered calcifications produced by
imaging lexicon and feature extraction. Froc ~ Preast cancer. Calcifications display ir-
4th Int Workshop on Digital Mammography, regular contours and vary in size and
Nijmegen, Netherlands, June 7-10, 1998 shape.

25.Gurney J: Neural networks at the crossroads:
Caution aheadradiology193(1): 27-28, 1994.
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Table 1. Dynamic Sequence of Interview of an Expert

Case f1 f2 U} Monotone extension Chain # Case #
biopsy Cancer shape and 1.1 0.0
density of
calcification
1 2 3 4 5 6 7 8
(01100) 1* 1* 1* 1.2,6.3;7.3 7.1,8.1 Chain 1 11
(11100) 1 1 1 6.4,7.4 5.1;3.1 1.2
(01010) 1* 0* 1* 2.2,6.3;8.3 6.1,8.1 Chain 2 2.1
(11010) 1 1* 1 6.4,8.4 3.1,6.1 2.2
(11000) 1* 1* 1* 3.2 8.1,9.1 Chain 3 3.1
(11001) 1 1 1 7.4,8.4 8.2,9.2 3.2
(10010) 1* 0* 1* 4.2,9.3 6.1,9.1 Chain 4 4.1
(10110) 1 1* 1 6.4,9.4 6.2;5.1 4.2
(10100) 1* 1* 1* 5.2 7.19.1 Chain 5 5.1
(10101) 1 1 1 7.4,9.4 7.2,9.2 5.2
(00010) 0* 0 0* 6.2;10.3 10.1 Chain 6 6.1
(00110) 1* 1* 0* 6.3;10.4 7.1 6.2
(01110) 1 1 1 6.4;10.5 6.3
(11110) 1 1 1 10.6 6.4
(00100) 1* 1* 0* 7.2;,10.4 10.1 Chain 7 7.1
(00101) 1 1 0* 7.3;10.4 10.2 7.2
(01101) 1 1 1* 7.4,10.5 8.2,10.2 7.3
(11101) 1 1 1 5.6 7.4
(01000) 0* 0 1 8.2 10.1 Chain 8 8.1
(01001) 1* 1* 1 8.3 10.2 8.2
(01011) 1 1 1 8.4 10.3 8.3
(11011) 1 1 1 10.6 9.3 8.4
(10000) 0* 0 1* 9.2 10.1 Chain 9 9.1
(10001) 1* 1* 1 9.3 10.2 9.2
(10011) 1 1 1 9.4 10.3 9.3
(10111) 1 1 1 10.6 10.4 9.4
(00000) 0 0 0 10.2 Chain 10 10.1
(00001) 1* 0* 0 10.3 10.2
(00011) 1 1* 0 10.4 10.3
(00111) 1 1 1 10.5 10.4
(01111) 1 1 1 10.6 10.5
(111112) 1 1 1 10.6
Total 13 13 12
Calls
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Table 2. Examples of Extracted Diagnostic Rules

Diagnostic Rule F-criterion for Features Total Significance of F-criterion Accuracy of
Diagnosis for
0.01 0.05 01 Test Cases (%)
IF NUMber of calcifications per NUM 0.0029 + + + 93.3
cm2 is between 10 and 20 AND VOL 0.0040 + + +
VOLume > 5 cm3
THEN Malignant
IF TOTal number of calcifications | TOT 0.0229 - + + 100.0
>30 AND VOLume > 5 cm° VoL 0.0124 - + +
AND DEN 0.0325 - + +
DENSITY of calcifications is
moderate
THEN Malignant
IF VARiation in shape of VAR 0.0044 + + + 100.0
calcifications is marked AND NUM 0.0039 + + +
NUMBber of calcifications is IRR 0.0254 - + +
between 10 and 20 AND
IRRegularity in shape of
calcifications is moderate
THEN Malignant
IF variation in SIZE of SIZE 0.0150 - + + 92.86
calcifications is moderate AND SHAPE 0.0114 - + +
Variation in SHAPE of IRR 0.0878 - - +
calcifications is mild AND
IRRegularity in shape of
calcifications is mild
THEN Benign
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