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Enhancement of Cross Validation Using
Hybrid Visual and Analytical Means
with Shannon Function

Boris Kovalerchuk

Abstract The algorithm of k-fold cross validation is actively used to evaluate and
comparemachine learning algorithms. However, it has several important deficiencies
documented in the literature along with its advantages. The advantages of quick
computations are also a source of its major deficiency. It tests only a small fraction
of all the possible splits of data, on training and testing data leaving untested many
difficult for prediction splits. The associated difficulties include bias in estimated
average error rate and its variance, the large variance of the estimated average error,
and possible irrelevance of the estimated average error to the problem of the user.
The goal of this paper is improving the cross validation approach using the combined
visual and analytical means in a hybrid setting. The visual means include both the
point-to-pointmapping and a newpoint–to-graphmapping of the n-Ddata to 2-Ddata
known as General Line Coordinates. The analytical means involve the adaptation of
the Shannon function to obtain theworst case error estimate. Themethod is illustrated
by classification tasks with simulated and real data.

Keywords k-fold cross validation · Machine learning · Visual analytics ·
Visualization · Multidimensional data · Shannon function · Worst case · Error
estimate · Error rate · General line coordinates · Linear classifier · Hybrid
algorithm · Interactive algorithm

1 Introduction

1.1 Preliminaries

Cross validation (CV) hold out estimate is a common way to evaluate the perfor-
mance of classifiers in machine learning. In k-fold cross validation data are split into
k equal-sized folds. Each fold is a validation/test set for evaluating classifiers learned
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on the remaining k − 1 folds. The error rate is computed as the average error across
the k tests and is considered as an estimate of the error expectation. The empirical
error on a test set in CV often is a more reliable estimate of the generalization error
than the observed error on the training set [3]. The k-fold cross validation reduces
the computation of a simple CV method known as leave-one-out cross validation
[38]. Several variations of the k–Fold Cross Validation (KCV) for the Support Vec-
tor Machine (SVM) classification are compared experimentally in [1]. Parametric
methods for comparing the performance of two classification algorithms evaluated
by k-fold cross validation are proposed in [35] and strategy to find the global mini-
mumCV error as a function of two SVM parameters in [10]. Selection of k for k-fold
validation under some assumptions is explored in [2].

Four cross validation schemes are presented in [29], which are summarized below:

(1) Standard stratified cross validation (SCV) places an equal number of samples of
each class on each partition to keep the same class distributions in all partitions.

(2) Distribution-balanced stratified cross validation (DB-SCV) keeps data distri-
bution as similar as possible between the training and validation folds and
maximizes the diversity on each fold to minimize the covariate shift.

(3) Distribution-optimally-balanced stratified cross-validation (DOB-SCV) is DB-
SCV with the additional information used to choose in which fold to place each
sample.

(4) Maximally-shifted stratified cross validation (MS-SCV)creates the folds that are
as different as possible from each other. It tests the maximal influence partition-
based covariate shift on the classifier performance by putting the maximal shift
on each partition.

Here covariate shiftmeans different distributions on the training and test sets [32],
e.g., a unimodal distribution on the training set and a two-modal distribution on the
testing/validation set.

This paper provides a justification for the use of the worst case estimates and
Shannon Functions. The case studies show the examples of visual ways of worst
case estimates in the data of different dimensions in combination with the analytical
methods. This paper is organized as follows. Section 1 contains preliminaries, k-
fold Cross validation challenges and process. Section 2 describes the method that
includes the adaptation of the Shannon function (Sect. 2.1), discussion of alternative
algorithms (Sect. 2.2), and the interactive hybrid algorithm (Sect. 2.3). Section 3
provides three case studies: on linear SVMand simplified Fisher Linear Discriminant
Analysis (LDA) on modeled data in 2-D to illustrate the hybrid algorithm (Sect. 3.1);
on LDA and visual classification in 4-D on Iris data (Sect. 3.2), and on GLC-AL
and simplified LDA algorithms in 9-D on Wisconsin Breast Cancer Diagnostic data
(Sect. 3.3). Section 4 contains discussion and conclusion.
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1.2 Challenges of k-Fold Cross Validation

Challenges of cross validation have been analyzed for a long time. The representative
publication is [7] where four sources of random variation in cross validation are
identified.

• Selection of validation data to evaluate learning algorithmsA andB. On a randomly
selected validation data A can outperform B, though, on the whole, population A
and B can be identical.

• Selection of training data to evaluate learning algorithms A and B. On a randomly
selected training data A can outperform B, though on average A and B can be
identical. Decision trees suffer from such instability even with adding or deleting
few points.

• Internal randomness of the algorithm. Neural networks initiate random weights.
The algorithm GLC-AL that we use in this paper randomly initiates coefficients.

• Randomly mislabeled a fraction of validation data. It is hard to expect that the
algorithm will get fewer errors than this fraction.

Below we summarize more challenges specific for k-fold cross validation that are
relevant to this paper.

Selecting k. The first question is how to select k for k-fold split. The larger k can
lead to models with fewer errors on validation data due to larger training data. For
instance, for k= 10, 90%of data are in training sets and only 10%are in the validation
set in each training-validation pair. In contrast, smaller k can lead to models with
more errors on validation data due to the smaller training data, e.g., for k = 2 we have
50%:50% split between training and validation data. The lower k can give a higher
confidence in accuracy of the model on the validation data due to the larger number
of cases in the validation set, but less confidence in accuracy of the model on the
training data due to smaller training data. For k = 2 we have only two alternatives
for a given split: (1) using the first half for training and second half for validation, or
(2) vice versa.

Multiple k. Running k-fold cross validation for multiple k increases computation
load, and still may not justify selection of a specific k when performance for different
k varies significantly.

Selecting a split (partitioning). There are multiple ways to split data to k bins
(folds). For instance, for k = 2 it is a number of combinationC(m,m/2)=m!/(m/2)!2,
where m is the number of given n-D points. For a very small training set with m =
100 we have C(100, 50) > 1029. This number of splits grows exponentially with m.
The question is how to select a particular split out of these 1029 splits for m = 100.
If we select only a single split out of these 1029 splits the accuracy of classification
in this split may or may not be representative for the given dataset.

Multiple splits. Selecting multiple splits of data is computationally expensive
with exponential grows with m. The question is how many splits to make and what
k to keep. The use of the statistical criteria to evaluate the statistical significance of
the accuracy of the result in a single split or a few splits can be questioned from
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multiple viewpoints [7]. This is especially challenging for high-dimensional data.
For instance, 100 points in 100-D space hardly represent the 100-D probability
distribution function (pdf). Note that for images 100-D is just a way to represent a
tiny image with 10 × 10 pixels in a gray scale.

Multiple criteria of accuracy. The question ishow to select a criterion to estimate
the error on both training and validation data. The estimate of the expected (average)
error E(e) used in k-fold cross validation may not be the best one for the user’s task
such as the tasks with high cost of individual errors. The alternatives are max error,
min max error, weighed error and others.

In summary the main problems with k-fold are that:

(i) many splits that are difficult for prediction on the verification data will not be
tested [7],

(ii) estimated average errors can be biased [7],
(iii) estimated variance of average errors can be large and/or biased [6, 7],
(iv) estimates of the average error and its variance in (ii) and (iii) can be insufficient

or even irrelevant to the supervised learning problem that is of user’s interest.

The first three problems are well documented in the literature on statistical
machine learning. The theoremproved in [6] states that there exists no universal (valid
under all distributions) unbiased estimator of the variance of k-fold cross validation.
Multiple attempts have been made to address k-fold problems under different addi-
tional assumptions. The examples include a modification of k-fold known as 5x2CV
cross validation to decrease the bias and improve t-statistics used for evaluation [7]
and unbiased variance estimates under restrictive assumptions on the distribution of
cross-validation residuals [9]. Other more recent studies are listed in Sect. 1.1. To the
best of our knowledge much less was done for the problem (iv) in both probabilistic
and deterministic settings.

The problem (iv) is considered in this paper with the use of the Shannon function.
This problem is related to the Maximally-shifted stratified cross validation (MS-
SCV) listed above as schema (4). It is found in extensive experiments on real data in
[29] that: (1) MS-SCV produces a much worse accuracy than all other partitioning
strategies, and (2) cross validation approaches that limit the partition-induced covari-
ate shift (DOB-SCV, DB-SCV) are more stable when running a single experiment,
and need a lower number of iterations to stabilize. These results illustrate well the
problem. We can limit the covariate shift in cross validation to get a more stable
result on validation data. However, nobody can guaranty us that on new unseen data
the covariance shift will be limited or limited in the same way. It is simply out of our
control in many real world tasks.

Therefore, the stable result under such limits on the partition-induced covariate
can be biased showing a lower error rate than it can be on the real test data. If a user
will get estimates of expected error rate in schemas that:

• limit the partition-induced covariate shift (“average” case) and
• do not limit them, but are looking for the bounds for “worst” and “best” cases,
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then the risk of using a given learning algorithmwith “average” case will be balanced
by more complete information. This is the ultimate goal of this paper.

1.3 k-Fold Cross Validation Process

In this section we define the k-fold cross validation algorithm and its challenges. Let
D be a set that consists of m1 samples of class 1 and m2 samples of class 2 with each
sample is an n-D point and let k be a number of folds (bins) used to split data. Table 1
illustrated k-fold cross validation algorithm for k = 10 and 1000 samples (500 from
class 1 and 500 from class 2). Assume that the first 500 n-D records inD are samples
of class 1 already randomly ordered. Assume that the second 500 records in D are
samples of class 2 that are also randomly ordered. For k = 10 in each of 10 pairs
(training data, validation data) 90% of data are in the training dataset and 10% are
in the validation dataset.

Below we describe steps of k-fold algorithm in general terms with comments
on alternatives that it does not explore when run for a given k:

(1) Select the number of bins equal to k. Commonly k is between 2 and 10. The
given k is only one of these alternatives,

(2) Select a way to split D into k bins with about m1/k and m2/k samples of classes
1 and 2, respectively in each bin with the total of about m/k points in each bin.
The term “about” is used here to reflect the fact that m1/k and m2/k may not be
integers and need to be adjusted to be integers. The k-fold algorithm uses the
random split as the way to split D. It produces one split of D to k bins out of
the many possible splits that can be produced randomly or non-randomly.

Table 1 Example of k-fold cross validation algorithm for k = 10

Step 1 Assign k = 10

Step 2 Form k bins (folds)
Bin 1:
Bin 11: samples 1–50 from class 1, Bin 12: samples 1–50 from class 2
Bin 2:
Bin 21: samples 51–100 from class 1 Bin 22: samples 51–100 from class 2
…..
Bin k:
Bin k1 samples 451–500 from class 1, Bin k2: samples 451–500 from class 2

Step 3 Form training validation pair P(i) = <Tr(i), Val(i)>
For every i: 1, 2, … k, Val(i) = Bin(i) and all other bins are in Tr(i)
For instance, in <Tr(1). Val(1)> Val(1) = Bin1 and all other bins are in Tr(1)

Step 4 For every i compute the error e(i) on Val(i) obtained by the algorithm Algj trained on
Tr(i)
Compute average of all e(i) as an estimate of the expectation E of e, E(e) and
estimate its statistical significance relative to another algorithm or random prediction
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(3) Form k pairs (training data, validation data) with about (k − 1) m/k training
samples and about m/k validation samples in each pair by using a split of D to
k-bins from (2). Validation data for different pairs do not overlap. Other splits on
(3) would generate other pairs. Moreover, even for the given split, these k pairs
are a part of a much larger set of training, validation pairs with j m/k samples
for training and (k − j) m/k samples for validation. For instance, for k = 10
and j = 3 the pair contains 70% of D in the training data and 30% of D in the
validation set. The reason for using only k pairs in the k-fold ensures that the
test data do not overlap. 10-fold does not test more challenging pairs 70%:30%,
but only 90%:10% split pairs.

(4) Select the function to estimate prediction error and compute this function using
all k pairs from (3). The standard k-fold selects the estimate of expected (average)
error E(e) as described in Table 1. The alternatives are max error, min max error
and others.

2 Method

2.1 Shannon Function

Below we formalize a way to evaluate the worst case as a compliment to k-fold
estimates of the average error. It is done by adaptation of the minimax Shannon
function [30] originally proposed for analysis of the complexity of switching circuits
as Boolean functions. The Shannon function measures the complexity of the most
difficult function. It was used in the evaluation of complexity of computation of
Boolean functions by analog circuits [33]. The complexity L(f ) of a function f is the
lower bound of the complexity of circuits realizing f. The function L(n), equal to the
maximum complexity of functions of n arguments is called a Shannon function [13].
In particular, this function was applied to find an algorithm Aj that restores the worst
(most complex) monotone Boolean function of n-variables for the smallest number
of queries [11, 16].

Consider a labeled dataset D and a set of machine learning algorithm {Aj}j∈J .
Let {Di}i∈I , 1 = {1, 2, …, m} be a set of splits of D to <Training data, Validation
data> pairs. k-fold cross validation split is one of them. Each Di is a pair of training
and validation data, Di = (Tri, Vali). Ajv(Di) is the error rate on validation data Vali
produced by Aj when Aj is trained on the training data Tri fromDi. The adaptation of
the Shannon function S(I, J) to supervised learning problem is defined as follows

S(I, J ) = min
j∈J

max
i∈I A jv(Di ) (1)

The algorithm Ab is called S-best algorithm if
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S(I, J ) = min
i∈I Abv(Di ) (2)

In other words, the S-best algorithm produces fewer errors on validation data on
its worst k-fold splits among {Di} than other algorithms on their worst k-fold splits
among {Di}.

LetDa = {Di:i∈ Ia} be a set of all passible k-fold splits for given k and dataD, i.e.,
k − 1 folds (bins) with the training data and one fold (bin) with the validation data.
In contrast with the standard k-fold validation, here the validation sets for different
Di can overlap. Let DT = {Di:i ∈ T} is some set of splits.

Statement. If DT = {Di:i ∈ T} ⊆ Da then S(Ia, J) ≤ S(IT , J)
This statement follows directly from definitions of these terms. For instance, if

S(IT , J) = 0.2 then adding more splits can give us a better split Dr in Da such that
A jv(Dr ) < 0.2 for some Aj.

In other words, for eachDT the value of S(Ia, J) provides a low bound for S(IT , J).
Similarly, for Da the value of S(IT , J) provides an upper bound for S(Ia, J). A
standard k-fold split DK = {Di:i ∈ K} is one of DT . How close the bounds are to
the actual worst case depends on the specific DT and Da. At least the average error
rate for DK can be computed quickly enough. Computing error rates for multipleDK

produced by random or non-random splits of data into folds will give several bounds.
Asymptotically this will lead to the actual Shannon worst case,

Dw = arg(min
j∈J

max
i∈I A jv(Di )) (3)

Split Dw is called the worst case split for S-best algorithm Ab.

Dw = arg(max
i∈I Abv(Di ) (4)

Informally, the worst case split is a split, which is most difficult for the S-best
algorithm which produces fewer errors on validation data than other algorithms on
their worst splits from {Di}.

Split Db is called the best case split for S-best algorithm Ab

Dh = arg(min
i∈I A jv(Di ) (5)

Informally, the best case split is a split, which is easiest for the S-best algorithm
which produces fewer errors on the validation data than the other algorithms on their
worst splits from {Di}.

Split Dm is called the median split for S-best algorithm Ab,

Dh = arg(median
i∈I

(
A jv(Di )

)
(6)

Informally, the median split for the S-best algorithm produces the error rate that
is close to the average error rate among {Di} for Ab algorithm.
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The worst and best estimates (4) and (5) compliment (6) and the traditional k-fold
expectation estimate evaluated by the t-test statistics. This is especially useful when
the expectation has a high variance. Both the worst case and best case estimates
provide the “bottom line” of the expected errors. As we mentioned above, for the
tasks with a high cost of individual error, it is very important.

2.2 Alternative Algorithms

This section analyzes options for algorithms to find worst, best and median splits
defined above. The options are:

• brute force algorithms,
• specialized automatic algorithms that exploit known structural information about
data,

• interactive algorithms that exploit 2-D visual representation of n-D data, and
• hybrid algorithms that combine automatic and interactive visual algorithms.

Thebrute force algorithms require explorationof the number of alternatives,which
grow exponentially with the size of D. Therefore, such algorithms are of practical
interest only for very small datasets. Specialized algorithms must be developed for
each type of structural information about data. Thus, the approach based on the
structural information is labor intensive and not scalable. Interactive and hybrid
algorithms are most promising and will be explored in this paper. We focus on
the hybrid algorithms as this allows combining the advantages of automatic and
interactive visual algorithms.

There are twomajor types of 2-D visualizations of n-D data available in the hybrid
approach:

(1) each n-D point is mapped to a 2-D point (we denote this mapping as P-P), and
(2) each n-D point is mapped to a 2-D structure such as a graph (we denote this

mapping as P-G).

Principal Component Analysis (PCA) [12, 36], Multidimensional Scaling (MDS)
[25], Self-Organizedmaps (SOM) [14], RadVis [31] are examples of (1), and Parallel
Coordinates (PC) [15], and General Line Coordinates (GLC) [18–20] are examples
of (2). The P-P representations (1) are not reversible (lossy), i.e., in general there is
no way to restore the n-D point from its 2-D representation. In contrast PC and GLC
graphs are reversible [19].

Thenext issue is preservingn-Ddistance in 2-D.While suchP-P representations as
MDS and SOMare specifically designed tomeet this goal, in fact, they onlyminimize
the mean difference in distance between the points in n-D and their representations
in 2-D. PCA minimizes the mean-square difference between the original points and
the projected ones [36]. For individual points the difference can be quite large. For a
4-D hypercube SOM and MDS have Kruskal’s stress values Ssom = 0.327 and Smds
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= 0.312, respectively, i.e., on average the distances in 2-D differ from distances in
n-D over 30% [8].

Such high distortion of n-D distances (loss of the actual distance information)
can lead to misclassification, when such corrupted 2-D distances are used for the
classification in 2-D. This problem is well known and several attempts have been
made to address by controlling and decreasing it, e.g., for SOM in [36]. In medical
and engineering diagnostic tasks, as well as defense object classification tasks with
high cost of error, it can lead to disasters and loss of life.

In contrast, the distance between graphs in 2-D can be defined to preserve the
distancebetween all n-Dpoints not onlyminimize the averagedifference of distances.
Below we explain it.

Let A* and B* be graphs for n-D points A = (a1, a2, …, an) and B = (b1, b2, …,
bn). In PC, each ai and bi of A and B is represented as a node of the graph. If the
distance between ai and bi is e, |ai − bi | = e then the distance between nodes a*i
and b*i in PC is the same, |a*i − b*i | = e due to design of PC. Thus, D(A*, B*) is
defined as

D
(
A∗, B∗) = ||A − B|| = (

n∑

i=1

(ai − bi )
2)1/2

The same is true for other General Line Coordinates that map each ai to a graph’s
node a*i. For those GLC that map each pair (ai, ai+1) to a graph’s node a*i,i+1 and
each pair (bi, bi+1) to a graph’s node b*i,i+1 the distances between these nodes is
a standard Euclidian distance in 2-D, D(a*i,i+1, b*i,i+1) = ((ai − bi)2 + (ai+1 −
bi+1)2)1/2. The squared distance between graphs D2(A*, B*) is defined as the sum of
all squared D2(a*i,i+1, b*i,i+1). Thus, D(A*, B*) is as before, D(A, B) = ||A − B||, just
it is computed using pairs,

D
(
A∗, B∗) = ||A − B|| =

(
n/2∑

i=1

(D(a∗
i,i+1, b

∗
i,i+1)

2

)1/2

Note that if n is odd, the last coordinate xn is repeated to get the even n. The
formula above assumes such even n. Informally if n-D points A and B are close to
each other, then the graphs A* and B* in GLC are also close to each other. In P-P
representations it is not guaranteed. For this reason, the visual means that we use are
based on the General Line Coordinates.

In the hybrid approach below the visualization guides both:

(1) getting the information about the structure of data, and
(2) finding theworst, best andmedian split of data into the training–validation pairs.

In current machine learning practice, 2-D representation is commonly used for
illustration and explanation of the ideas of the algorithms such as SVM or LDA,
but much less for actual discovery of n-D rules due to the difficulties to adequately
represent the n-D data in 2-D, which we discussed above.



borisk@cwu.edu

526 B. Kovalerchuk

2.3 Interactive Hybrid Algorithm

Belowwe propose non-randomheuristic ways to generate spits to get better estimates
of worst, best, and median case error estimates. While there are always counterex-
amples for heuristic ideas these ideas are more successful for finding worst, best,
and median cases than random splits used in typical cross validation. The first step is
setting up a threshold for samples from opposing classes to be considered as closely
located.

Worst case heuristic is to include closely located points of opposing classes to
validation data Val, but not to training data Tr. The intuition behind it is that closely
located points from opposing classes have higher chance to be misclassified if not
included to training data.

Best case heuristic is to include closely located points of opposing classes to
training data Tr, but not to validation data Val. The intuition behind it is that difficult
for classification closely located points from opposing classes have higher chance to
be classified correctly if used for training the classifier.

Median case heuristic. Worst and best splits described above are mixed pro-
portionally with the splits that do not have Tr and Val from worst and best splits.
Alternatively, none from best and worst splits are included.

Other heuristics to decrease computations are building best and worst cases using
only points that are located on the frames of the convex hulls of opposing classes
and only inside of convex hulls for the average cases.

If classes are separable (convex hulls do not overlap), and the distance between
closest points of convex hulls is large (say, comparable with the length of the convex
hulls), then it is likely that the worst, best, and median cases will produce error-free
discriminant functions for multiple classification algorithms. In this situation, all
these algorithms will be S-best algorithms, and the cross validation exploration can
be minimized.

In contrast, when the classes are closely located or overlap, extensive cross vali-
dation is required. This includes a situation when a search for the worst case splits
led to a split with a large error rate on validation data. If the further exploration
produced only a single much better split, then it must be justified beyond its high
accuracy before using it for prediction. Such justifications can be establishing that
the discovered model is explainable, which adds the confidence.

The steps of first part of the interactive hybrid algorithm for the S-best
algorithm, which is discovering the data structure are as follows:

(S1) Visualize n-D data in 2-D.
(S2) Select border points of each class, color them in different colors.
(S3) Outline classes by constructing envelopes in the form of a convex or a non-
convex hull.
(S4) Outline (a) overlap areas L for overlapped classes or (b) select closest areas C
for separable classes.
(S5) Compute the size of the overlap areas L or areas C of the closest samples.
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(S6) Set up ratio of training-validation data, |Tr||/|Val|, e.g. 90%:10% with (|Tr|| +
|Val|)/|Val| = k.

The steps of second part of the interactive hybrid algorithm for the worst case
(IH-W) of S-best algorithm are:

(W1) Form Val as areas L or C.
(W2) Adjust (increase or decrease) L or C to make |L| = |Val|, or |C| = |Val|.
(W3) Form training data Tr = D\Val and pair <Tr, Val>.
(W4) Apply each Algorithm Aj to Tr to construct discrimination function F.
(W5) Apply F to Val to get error rate Ajv(Val).
(W6) Record Ajv(Val) and find max(Ajv(Val)), j ∈ J.
(W7) Repeat (W1)–(W6) to get values {max Ajv(Vali)} i ∈ I for a set of training-
validation pairs {Di}.
(W8) Find the Shannon worst case split, mini∈I maxj∈J (Ajv(Vali)) and algorithm Ab

that provides this split.

The interactive algorithm for the best case (IH-B) of S-best algorithm is:

Use algorithm Ab from step W8 to get mini∈I (Abv(Vali)).

The interactive algorithm for the median case (IH-A) of S-best algorithm is:

Use algorithm Ab from step W8 to get mediani∈I (Abv(Vali))

Note: norm |X| can be computed as the actual number of cases from D in the area
X or as size of the area X depending on the density of the points of calluses in the
areas.

3 Case Studies

The problem in n-D space is that we do not see n-D data, and need visual tools to
represent n-D data in 2-D space. Figures below, in case studies, show how the visual
means support finding worst and best cases of splits with the use of the interactive
hybrid algorithm presented in this section.

3.1 Case Study 1: Linear SVM and LDA in 2-D on Modeled
Data

In this section, we assume a point-to-point (P-P) representation of n-D data in 2-D
such as PCA, MDA, and SOM. The interactive hybrid algorithm is demonstrated for
the search of the worst case estimates in cross validation for the two classification
algorithms. These two algorithms are the linear SVMand the simplified Fisher Linear
Discriminant Analysis (LDA). First we illustrate both algorithms with the examples
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in Figs. 1 and 2. For the linear SVMwe use its geometric interpretation [4, 5], which
is based on the closest support vectors of the two classes.

In Fig. 1a linear SVM uses line Lsv(A, B) that connects two closest support
vectors (SV) A and B from opposing classes (blue and grey pentagons that constitute
data D). The line Lsv(A, B) is used to build a discrimination line LD. Line LD bisects
line Lsv(A, B) in the middle and is orthogonal to Lsv(A, B).

In Fig. 1b simplified Fisher LDA uses the average points for each class (points
A and B), connects them with line Lap. Then the orthogonal line LD bisects line Lap

in the middle. The line LD serves as the discrimination line.
In Fig. 1, both algorithms produce the same green discrimination line, which is

error free before any cross validation splits of these data. Figure 2 shows the results
of linear SVM and simplified LDA for one of 10-fold splits Di of the data D in the
cases of wide and narrow margins between the classes (pentagons). In both pictures,
the two violet triangles form a test set (total 10% of both pentagons). The remaining

(a) The red line connects the closest support vectors and green line 
bisects it in the middle to serve as a SVM linear classifier

(b) The red line connects centers and green line bisects it in the 
middle to serve as a LDA linear classifier.

Lsv LD

A B

LD

A B

Lep

Fig. 1 Two separable classes with wide margin classified by linear SVM and simplified LDA. All
points of each class are in the respective convex hulls (blue and grey pentagons)

(a) Linear SVM: wide margin case (b) Linear SVM: Narrow margin case

(c) Simplified LDA wide margin case (d) Simplified LDA: narrow margin case

A
B

Fig. 2 Two separable classes with wide and narrowmargin classified by linear SVM and simplified
LDA. InSVMthe red line connects closest support vectors fromopposing classes. InLDAit connects
centers of training data of classes. The green lines that bisect these lines in the middle serve as a
SVM and LDA linear classifiers, respectively. In the case of the narrow margin both classifiers are
not error free
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parts of the pentagons are the training data of this Di pair. Figure 2a, c shows that
in the case of the wide margins both the algorithms SVM and LDA are also error-
free, while producing different discrimination, functions. Thus, Fig. 2a, c provides
examples of the best case of the split for these algorithms.

In contrast, Fig. 2b, d show the errors in the case of a narrow margin with a larger
error for the linear SVM than for the LDA. We cannon state that these figures show
the worst case for any of these algorithms, but the smaller error for LDA can serve a
bound for S-best algorithm among these two algorithms. Other splits can have larger
errors.

Nowwewill show how these examples are related to the first part of the interactive
algorithm—visual discovery of the data structure. The results of steps S1–S5 are
shown in all parts of Fig. 2, Steps S3 are shown in Fig. 2b in addition to steps S1–S5.

Worst case. For the worst case, the steps W1–W5 are also illustrated in these
examples. In Sect. 2.3 we outlined a heuristic for finding a worst case split, which is
finding closely located points of opposing classes to be included to validation data
Val. The violet areas in Fig. 2 satisfy this heuristic. They were selected by visual
analysis of classes in Fig. 1.

Figure 3 illustrates the nextW steps of the interactive algorithm, where the adjust-
ment is starting from W7 to adjust/modify the validation data. Figure 3 shows the
result of the modification, which generates more errors than the split in Fig. 2, pro-
viding a stronger bound for the worst error. The general idea of designing such
stronger estimates is modifying visually the current split.

In Fig. 3 the green areas form the validation data (5% of the blue pentagon and
5% of the grey pentagon). The points A and B on the edge of the green areas belong
to the training data, but all other points of those inner edges belong to the validation
data. These edges are segments of the perimeters of the circles of equal radiuses
with centers in A and B. Thus points A and B are the closest support vectors of the
training data from opposing classes.

The green linear SVM discrimination line, produced using these A and B, has
significant error in both training and validation data, because A and B are located
asymmetrically (A higher than B). In Fig. 2b, A and B are at the same height. It is

(a) Linear SVM (b) Simplified LDA

Lsv
LD

A

B

Lep LD

A B

Fig. 3 Modification of validation area from Fig. 2b
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visible from the picture that larger difference in height leads to more errors in these
data.

The analytical part of the stepW2 at this stage uses a binary search with substeps:
(W21) finding the middle point on the pentagon edge where the point A is located.
Substep W22 is finding radius R such that the circle with R cuts a green area in the
grey pentagon equal to the 5% of that pentagon area. It is done by several iterations.
SubstepW23 is getting a candidate for the point B in the crossing of the grey pentagon
and the circle. Substep W24 is drawing a circle of radius R from B, and computing
the green area in the grey pentagon. Substep W25 is checking if this area is greater
than the 5% of the pentagon area, and moving point A to the right on its edge to the
middle of that half of that edge, otherwise A is moved to the middle of the left half of
the edge. Now substeps W22–W25 are repeated with binary splits of the edge until
the difference from 5% will be small enough to stop.

How to ensure that this process will converge? Step 2 will find the required area
for every location of point A. If B gives more than 5%, point A is moved to the right.
If new B still gives more than 5%, point A is moved further to the right. If finally B
gives less than 5%, point A is moved back until 5% is reached within the required
accuracy. For the case when B gives less than 5%, the sequence is similar.

Statement. Figure 3a is the worst case for linear SVM, when the two closest SV
of the two full pentagons shown in Fig. 1 are removed from the training data and
placed into the validation data.

Proof. Any split of the pentagons in Fig. 3 into the training and validation data
that keeps the closest SV in the training set produces the same discrimination line
(the green line in Fig. 1). This line is the optimal one because it provides error-free
discrimination of the pentagons. Thus, to get a line with errors we need to remove at
least one of the points A and B from the training data. Figure 3a shows such a case
when both original A and B from Fig. 1a are removed from the training data and the
new closest support vectors A and B are identified.

Let for a given point B a classifier with more errors than in Fig. 3a exists; it must
have its own SV in class 1 that is closest to B. Denote it as C. With this C no training
data from the blue pentagon can be in the green area other than point C, because
these points are closer to point B than C. Otherwise, C is not the closest SV to B.
This green area without C must be outside of the training data and must belong to the
validation data. In the 10-fold design for pentagons, the validation data must be no
greater than 5% of the pentagon area. Point A is selected at exactly 5% of the blue
pentagon area. Thus, point C cannot differ from A. Therefore, Fig. 3a is the worst
case when both original SV A and B are removed from the training data.

Figure 3b shows the result of the simplified LDA for the same validation data. This
result is the best case for the simplified LDA because this pair Di is error-free (see
green discrimination line in Fig. 3b). For this Di we have AvSVM(Di) > AvLDA(Di) =
0. Thus, LDA is the winner as the S-best algorithm for thisDi. For the previousDi in
Fig. 2 we also have AvSVM(Di) > AvLDA(Di), but AvLDA(Di) > 0. DenoteDi from Fig. 2
as D2 and from Fig. 3 and D3. In this notation, AvSVM(D2) > AvLDA(D3). Therefore,
LDA is the winner as the S-best algorithm for both D2 and D3 in comparison with
linear SVM.
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Generalization for arbitrary convex hulls. The example above with two pen-
tagons at specific locations shows that knowing the specific structural information
about the data it is possible to derive the exact worst case split for the given k, and
for simplified LDA and linear SVM. This approach can be generalized to any convex
hull not only equal pentagons at the specific locations. Figure 4 illustrates this for two
arbitrary convex hulls. It uses the same way of designing the worst case validation
data (selecting closest areas of two classes) for linear SVM as in Fig. 3. In Fig. 4
there are two closest SV B1 and B2 in the grey hexagon to point A, which is in the
blue rectangle. The SVM discriminant line for B1 is error-free, but the discriminant
line for LDA in Fig. 4c is not. Linear SVM is a winner for Di in Fig. 4 that we
denote as D4, AvLDA(D4) > AvSVM(D4). In this example, we build the discriminant
lines only for two closest SV from two classes. We do not consider the case when a
single discriminant line is constructed for several closest SVs while it can be done
similarly.

Discussion. What is important in the examples in this case study? It is not the
existence of the k-fold cross validation where one algorithm is better than another. It
is a fact that it was fund visually. The probability of this discovery is very low under
the blind random assigning of data to bins in the k-fold algorithm. The following
numerical example shows this.

Assume that we have 1000 samples of the two classes in the two pentagons in
Fig. 3. Thus, each bin (fold) in 10-fold will contain 100 samples. Also assume that
in each (Tr, Val) pair Di, training data contain 900 samples and the validation data
contain remaining 100 samples (50 samples from class 1 and 50 cases from class 2).
Each pentagon has only 5 nodes. We assume that all of them are among 500 samples
in the dataset D. With the random selection the probability to get the training or
validation set with one specific node from blue pentagon (denoted as node A) is
equal to 1/500. Respectively the probability p to get training or validation data with
two specific nodes A and B is low (1/500)2.

(a) Linear SVM  best case. (b) Linear SVM worsened case (c) Simplified LDA case

A

B1

A

B2

Fig. 4 Linear SVM and simplified LDA with different error rates for arbitrary convex hulls. Green
areas are the verification data
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Moreover, in Fig. 2b points A and B not only belong to training data, but are
closest support vectors from two opposing classes. The probability of this is even
lower under the random process of putting samples to the bins. It means that getting
a case Di that we have in Fig. 3 is unlikely by a random process. This case is one
of the worst cases for linear SVM in these data. In general, it means that if we are
not able to discover such Di then the k-fold will not allow us to see the difference
between these algorithms.

Next, even if such Di is included, the difference between average error estimates
for two algorithms will likely be statistically insignificant if both algorithm equally
accurate on the remaining nine training-validation pairs. This is a motivation for
using the Shannon function and for search of the worst cases or at least estimates the
bounds of the worst cases.

Why is it important to search for such rare worst training-validation pairsDi? The
ultimate goal ofmachine learning is generalization beyond the given dataD to unseen
data. The existence of worst training–validation pairs with large error indicates that
the algorithm Aj does not capture a generalization pattern in some situations on
given data D.

This increases the chances ofmisclassification on unseen data too. In the taskswith
the high cost of an individual error (e.g., in medicine and defense) such situations
must be traced and analyzed before use in real applications. For instance, if the S-best
algorithm defined in terms of the Shannon function on a set of selected splits {Di}
is not error-free then the areas where those errors occurred can be treated differently
than the error-free areas; It can be:

(1) refusal to classify data from those areas,
(2) use other machine learning algorithms,
(3) adding more data and retraining on extended data,
(4) cleaning existing data,
(5) modifying features,
(6) use other appropriate means including manual classification by experts.

The case study in this section uses 2-D modeled 2-D data of a given structure.
As was pointed out at the beginning of this section, to make it useful for real n-D
machine learning tasks 2-D data can be obtained from real n–D data by PCA, MDS,
SOM and other point-to-point matching visualization algorithms.

3.2 Case Study 2: LDA and Visual Classification in 4-D
on Iris Data

The case study in this section is based on the graph representation of n-D samples
in 2-D, not on a single 2-D point representation of n-D points considered in case
study 1. This graph representation is called Parametrized Shifted Paired Coordinates
(PSPC) [19, 20]. In PSPC a 4-D data points (x1, x2, x3, x4) is represented in 2-D as
arrows where the beginning of the arrow is point (x1, x2) in coordinates (X1, X2) and



borisk@cwu.edu

Enhancement of Cross Validation Using Hybrid Visual … 533

the end in the point (x3, x4) in coordinates (X3, X4). In Fig. 5, both coordinate systems
are shown. The example of such an arrow in an orange arrow defined by pairs (x1m,
x2m) and (x3m, x4m) in Fig. 5a. This point is the mean of all 4-D points of class 2 that
we will call the center of class 2. The mean of all 4-D points of class 1 is another
arrow. However, the location of coordinates pairs (X1, X2) and (X3, X4) on 2-D plain
is selected in PSPC in such a way that this arrow is collapsed to a single point. This
single point is shown as a black dot in the middle of the red blob that represents class
1. This parametrization of the location is described in [19]. For an n-D point with
n > 4, the arrow will be transformed into a sequenced of arrows (directed graph). For
an n-D point that is used as an anchor for the parametrization, this graph collapses
into a single 2-D point in the same way as described above for the 4-D.

In Fig. 5, Iris 4–D data [24, 26] of two classes are shown as arrows in PSPC
anchored in the center of class 1. Then two linear classification algorithms are applied.
Figure 5a shows the simplified LDA classifier (green line) and a visually constructed
classier (thin black line) for the 4-D data. For comparison, Fig. 5b shows the result
of applying the simplified LDA (dark green line) if data in those convex hulls would
be 2-D data. The visually constructed discriminant line is the same thin black line as
in Fig. 5a. In this case black dots in Fig. 5b are 2-D centers of classes 1 and 2. The
simplified LDA algorithm in Fig. 5b is the same as the one used in case study 1. It
produced a larger error than the visually constructed discriminant (thin black line),
which is error-free.

In contrast, for the 4-D case in Fig. 5a, the centers are arrows, not points, and the
middle of them is not a single point, but the line that connects the two green points.
The linear classifier (green line) is the extension of that line with a very small error.

What is important in the example in Fig. 5a? It is the abilities to build a visual
classifier (black line), to build visually a simplified LDA (green line), and be able
to compare the level of error visually without extensive computation. It also allows
the chopping visually of parts of the blobs to set up them as new validation data and
build new visual discrimination lines, compare the errors, and find worst and best

(a) Simplified LDA discriminant for 4-D data in PSPC  (dark green 
line) and visually constructed discriminant (thin black line). The 

orange arrow is the middle 4-D point of class 2.

(b) Simplified LDA discriminant (dark green line) for 2-D data and 
visually constructed discriminant (thin black line). Black dots are 2-D 

centers of classes 1 and 2.

LLDA

LVisual

X3

X4

X1

X2

(x1m,x2m)

(x3m,x4m)

LVisual

X4

X3

X2

X1

Fig. 5 Iris data in parametrized shifted paired coordinates (PSPC) anchored in class 1
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splits similarly to shown in case study 1. Purely computationally, it would require
massive combinatorial computations, and we still may not find the worst cases.

3.3 Case Study 3: GLC-AL and LDA in 9-D on Wisconsin
Breast Cancer Diagnostic Data

The case study in this section is also based on the graph representation of the n-D
samples in 2-D, not on a single 2-D point representation of an n-D point. For this
study, Wisconsin Breast Cancer Diagnostic (WBC) dataset was used [24, 26] with
9 attributes for each record and the class label which was used for classification.
The samples without missing values include 444 benign cases and 239 malignant
samples. Figure 6 shows the samples of screenshots,where these data are interactively
visualized, and classified with a linear classifier using GLC-L algorithm [20], and
GLC-AL algorithms [22] with the accuracy over 95% on these data. The malignant
cases are drawn in red andbenign in blue. For convenience of reading these algorithms
are presented in the appendix.

Below we show a way to get a worst case for the linear GLC-AL algorithm. The
comparison with the other algorithms is conducted by developing and using the 2-D

(a) Two thresholds are set for selecting the overlapping 
cases. 

(b) Overlapping cases from the interval between the two 
thresholds from (a).

Fig. 6 9-D Wisconsin breast cancer data in lossless GLC-L visualization and classification by
algorithm GLC-AL by an algorithm
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versions of the linear SVM and LDA in the GLC-L visualization. Here we w use the
convex hulls in 2-D not in n-D. We also use the interactive GLC-IL algorithm [22],
where the training process includes adjusting a threshold without finding the new
coefficients. In Fig. 6, the number of samples in the overlap area from both classes
is small (5.6%), and therefore can be visually analyzed quickly.

In Fig. 6a, the GLC-AL linear classifier misclassified 31 samples with all of them
from class 1 when all data (444 benign cases and 239 malignant samples) were used
for training. The selected overlap area contains 38 samples (4.5%, with 28 samples
from class 1, and 10 samples from class 2).

According to step W1 of the algorithm IH-W, we form the validation set Val as
a set of samples in the overlap area L. We keep Val equal to L without adjustment,
skipping the step W2. Next we use a shortcut for steps W2–W5, which allows us to
get a bound for the error rate Ajv(L), where Ajv is the GLC-L algorithm applied to
Val = L trained on Tr. The result of this shortcut is presented in Fig. 6b. It shows the
overlapping cases L, selected in Fig. 6a and the accuracy of classification of samples
from L, when all of them and only them are used as training data. At the first glance,
running GLC-L on L as training data, not validation data, contradicts steps W2-W5,
which require to running L as validation data. The trick is that, training GLC-L on
L as training data, we expect to get a smaller error rate on L than running the linear
model on L, constructed by GLC-L on training data Tr without any data from L in
Tr.

In Fig. 6b, the accuracy is 73.68% (error rate 0.2632) with L as training data. The
error rate 0.2632 is the upper bound for the error rate Ajv(L), Ajv(L) ≤ 0.2632. We
cannot get a bound with the larger number of errors than 0.2632 for the algorithm
GLC-L, ifwe continue to runGLC-Lon the overlap area L formore epochs. It follows
from the design of GLC-L. GLC-L keeps coefficients with the current lowest error
rate. Having the error rate equal to 0.2632 GLC-AL will update it only by finding a
smaller error rate, not a larger one.

This conclusion was made under assumption that we use L as Tr. Now we need to
explore what will happen with the other splits when L is only a part of Tr, not equal
to Tr. Can we get another error rate r for GLC-L, say r = 0.3, which is greater than
0.2632 for these other splits and respectively another upper bound for Ajv(L)? If such
greater r exists our previous claim, that we cannot get more errors with GLC-L, will
be wrong.

We cannot get such greater r for the same reason as above. The design of GLC-L
will not allow it. We already have a linear model in Fig. 6a that classified all samples
from Tr=D\L with zero error rate, where D is the total given dataset. Thus GLC-AL
algorithm trained on Tr data that include L will only keep linear models that classify
L better because for samples outside L GLC-AL already obtained models with zero
error rate.

This shortcut can be applied for anyGLC-L data. If such upper bound is a tolerable
error rate, then we can apply the coefficients found by GLC-AL on TR\L as training
data for classification of new data. Thus, steps W2–W5 of the algorithm IH-W for
GLC-L can be simplified.
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To compare the bound for GLC-Lwith the bounds for linear SVM and LDA steps,
W4–W6 must be run for these algorithms. The algorithm with the smallest bound
will be a candidate for the S-best algorithm on these data. In addition to this analytical
option, an interactive option exists for the modified and simplified versions of linear
SVM and LDA algorithms that work with 2-D GLC-L visual representations of n-D
data. Both algorithms follow the steps used in case study 1 with two differences: (1)
convex hull constructed by GLC-L algorithm are used, and (2) the overlap area is
defined by the location of the last node of the graph (marked by black squares). This
way to identify the overlap area was used in Fig. 6.

Linear SVM in GLC-L visualization uses closest support vectors (SV) from two
classes in GLC-L. For overlapping convex hulls of two classes we use the overlap
area that is identified by a user interactively using two thresholds (see green lines in
Fig. 6a). Two closest nodes of graphs from two different classes in the overlap area
are called closest support vectors. If the overlap area is empty (the case of linearly
separable classes) then two closest nodes of the frames of two convex hulls are called
closest support vectors. Having two closest support vector A and B we build a line
that connects them and a line that bisects than in the middle and orthogonal to the
first line. The closest nodes are defined in the projection line of the last point to the
horizontal line (see yellow line in Fig. 6b).

For the LDA we compute A as an average point in the projection on the point of
class 1 to the horizontal line and point B the same for the class 2. Then the middle
point C between A and B is used to construct the discrimination line. It is shown in
Fig. 6a as a grey line.

What is important in the example in Fig. 6 is the same as in case studies 1 and
2—the abilities to build a visual classifiers (in this case for 9-D), and be able to
compare error rates visually. It also allows chopping visually overlapping parts by
setting up thresholds interactively and using these folds to construct validation data
for the worst case.

4 Discussion and Conclusion

While cross validation is very useful, it needs to be improved to deal with its defi-
ciencies such as leaving untested many potentially difficult-for-accurate-prediction
splits. It is challenging due to a need to keep its advantage of faster computation. This
paper had shown a hybrid way to improve cross validation by using combined visual
and analytical means. We use both the well-known point-to-point and new point-to-
graph mapping of n-D data to 2-D data. The main benefit of this hybrid approach is
leveraging the abilities of the human visual system to guide the discovery of patterns
in 2-D. This includes discovering splits of n-D data in 2-D visualization of these data.
This approach creates an opportunity to avoid a blind computational search of worst
splits among the exponential number of alternatives that can be the case in the pure
computational analytical approach. In essence, the visual approach brings additional
information about the n-D data structure that the pure computational approach lacks.
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Adding such information from the visual channel can be viewed as a way to addmore
features and relations to the data, sometimes called privileged information [34], or
prior domain knowledge [27, 28]. The difference is that both privileged information
and domain knowledge typically are assumed to not be present in the original data.
In contrast, the visual channel makes the hidden information already present in n-D
data be readily available via the interactive process.

While this visual opportunity exists, it requires the relatively simple visualization
for humans to be able to discover a pattern in them, i.e., within the abilities of the
human visual channel. The ways to simplify the visual patterns in the General Line
Coordinates are proposed in [20]. Such ways should be applied before in concert
with the interactive search for worst case splits in cross validation.

The focus on worst case splits and adaptation of the Shannon function bring a
new formal validation task that covers both validation with or without cross splits
depending on a set of split used. Three cases studies illustrate the proposed approach
for different dimensions.

The main justification for the use of worst case estimates and Shannon Functions
is three-fold:

(1) Existence of the tasks with a high cost of individual errors (e.g., medicine and
defense);

(2) Existence of the tasks with a relatively low cost of individual error and a low
average error rate, but the high error rate for the worst case splits;

(3) Abilities to limit the application of the algorithm in the worst folds avoiding the
risky predictions.

In (1) and (2) the use of the average error rate can be too optimistic and risky
where the worst case estimate serves as warning, while (3) allows preventing risky
decisions. We may have two algorithms A and B with the average error rates with a
statistically insignificant difference, butA hasmuch smallerworst case error rate than
B. This can be a reason to prefer A for the classification of new samples, because A
was able to discover better difficult patterns than B showing stronger generalization
ability. In addition while error rate for A is better than for B in the worst case, in
some worst folds it can be too big. The prediction in these folds can be blocked for
both A and B.

In Sect. 1 we listed the several challenges for k-fold cross validation. These chal-
lenges are related to: (1) selecting the number of folds k and running multiple k,
(2) selecting data split, running multiple splits and missing multiple splits that left
untested, (3) large variance of error rates, (4) bias in estimated average errors and its
variance, and (5) insufficiencyor irrelevanceof estimated average errors (multiplicity
of criteria of accuracy).

The proposed hybrid approach allows dealing with these challenges as follows.
First k = 2 is used to provide an upper bound of the worst error rate for all the other
k for the given algorithm A. Then we increase k until the worst case bound will be
below threshold Tworst selected by a user for the given task. This k and k above it
are considered acceptable. On the other extreme, with k = m (leave-one-out split),
wherem is the number of samples, we consider another threshold Tbest, and decrease
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k until the best error rate will be still below Tbest. Assume that we find k that satisfies
both the Tworst and Tbest. Such k ensures that we have fewer errors in both the worst
and best cases, than the allowed thresholds for them. For instance, we can find that
for k= 8 the worst error rate is bounded by 0.18 and the best error rate is bounded by
the error rate 0.05, with average error rate as 0.12 with its variance ±0.02. In other
words, we have a wider interval [0.05, 0.18] than the average interval [0.10, 0.14].

The computational support of visual exploration and visual support of analytical
computations are important parts in this hybrid approach to avoid brute force search.
It is important that in the examples in the case studies, the bounds for the worst splits
were found by visual exploration without blind brute force computational search,
despite rarity of these splits. This includes a quick visual judgment that the error rate
in one split is greater than in another one. A user can find visually a large overlap
area of two classes and chop it to form several validation folds, e.g., getting 10-fold
cross validation splits. This confirms our main statement that brute force search is
not mandatory and is avoidable using an appropriate visualization.

The future studies are towardmakinghybrid interactionsmore efficient andnatural
in the computational and visual aspects, but not limited by them going to more
general data science approaches [21]. This includes adding speech recognitions to
interactions allowing a user to give oral commands such as “decrease slightly the
overlap area”, “shift the overlap area to the right”, “make an about 5% area on the
top of the convex hull” and so on. This will require formalization of the linguistic
variables involved in these commands in the spirit of the Computing with Words
(CWW) approach [17, 37]. More complex commands such as “decrease slightly the
overlap area, and shift the overlap area to be close to the envelope frame” will require
more sophisticated uncertainty aggregation techniques [23] from probability theory,
fuzzy logic and interval analysis.

Appendix

For convenience of reading this article, the appendix below presents the GLC-L
algorithm from [20] and GLC-AL algorithm from [22], which are used in Sect. 3.3.

Appendix 1: Base GLC-L Algorithm

Let K = (k1, k2, …, kn+1), ki = ci/cmax, where cmax = |maxi=1:n+1(ci)|, and G(x) =
k1x1 + k2x2 + · · · + knxn + kn+1. Here all ki are normalized to be in [−1, 1] interval.
The following property is true for F and G: F(x) < T if and only if G(x) < T /cmax.
Thus F and G are equivalent linear classification functions. Below we present the
steps of the base visualization algorithm called GLC-L for a given linear function
F(x) with the given coefficients C = (c1, c2, …, cn+1).
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Step 1: Normalize C = (c1, c2,…, cn+1) by creating as set of normalized parameters
K = (k1, k2, …, kn+1): ki = ci/cmax. The resulting normalized equation yn = k1x1 +
k2x2 + · · ·+ knxn + kn+1 with the normalized rule: if yn < T /cmax, then x belongs to
class 1 else x belongs to class 2, where yn is a normalized value, yn = F(x)/cmax. Note
that for the classification task, we can assume cn+1 = 0 with the same task generality.
For regression we also deal with all the data normalized, e.g., if actual yact is known,
then it is normalized too, yact /cmax for comparing with yn.
Step 2: Compute all angles Qi = arccos(|ki|) of absolute values of ki and locate
coordinates X1 − Xn in accordance with these angles as shown in Fig. 7 relative to
the horizontal lines. If ki < 0 then coordinate X i is oriented to the left, otherwise X i

is oriented to the right (see Fig. 7). For a given n-D point x = (x1, x2, …, xn) draw
its values as vectors x1, x2, …, xn in respective coordinates X1–Xn (see Fig. 7).
Step 3. Draw vectors x1, x2, …, xn one after another, as shown on the left side of
Fig. 7. Then project the last point for xn onto the horizontal axis U (see a red dotted
line in Fig. 7). To simplify visualization axis U can be collocated with the horizontal
lines that define the angles Qi as shown in Fig. 8.
Step 4.
Step 4a. For regression and linear optimization tasks repeat step 3 for all n-D points
as shown in the upper part of Fig. 8.
Step 4b. For the two-class classification task, repeat step 3 for all the n-D points of
classes 1 and 2 drawn in different colors. Move points of class 2 by mirroring them
to the bottom with axis U doubled as shown in Fig. 8. For more than two classes,
Fig. 1 is created for each class, and m parallel axes Uj are generated next to each
other similar to Fig. 8. Each axis Uj corresponds to a given class j, where m is the
number of classes.

Fig. 7 4-D point A = (1, 1, 1.2, 1.2) in GLC-L coordinates X1–X4 with angles (Q1, Q2, Q3, Q4)
and vectors xi shifted to be connected one after another, and the end of last vector projected to the
black line. X1 is directed to the left due to negative k1. Always, the coordinates for negative ki are
directed to the left
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Fig. 8 Result with axis X1
starting at axis U and
repeated for the second class
below it

U

Step 4c. For the multi-class classification task, conduct step 4b for all n-D points of
each pair of classes i and j drawn in different colors, or draw each class against all
other classes together.

This algorithm uses the property that cos(arccos k) = k for k ∈ [−1, 1], i.e.,
projection of vectors xi to axisU will be kixi and with consecutive location of vectors
xi, the projection from the end of the last vector xn gives a sum k1x1 + k2x2 + · · · +
knxn on axis U. It does not include kn+1. To add kn+1, it is sufficient to shift the start
point of x1 on axis U (in Fig. 7) by kn+1. Alternatively, for the visual classification
task kn+1 can be omitted by subtracting kn+1 from the threshold.

Appendix 2: Algorithm GLC-AL for Automatic Discovery
of Relation Combined with Interactions

The GLC-AL algorithm differs from the Fisher Linear Discrimination Analysis
(FDA), Linear SVM, and Logistic Regression algorithms in the criterion used for
optimization. The GLC-AL algorithm directly maximizes accuracy,

A = (TP + TN)/(TP + TN + FP0 + FN),

which is equivalent to the optimization criterion used in the linear perceptron]
and Neural Networks in general. In contrast, the Logistic Regression minimizes
the Log-likelihood. Fisher Linear Discrimination Analysis maximizes the ratio of
between-class to within-class scatter. The Linear SVM algorithm searches for a
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hyperplane with a large margin of classification, using the regularization and the
quadratic programming.

For the practical, GLC-AL uses a simple random search algorithm that starts from
a randomly generated set of coefficients ki, computes the accuracy A for this set, then
generates another set of coefficients ki again randomly, computes A for this set, and
repeats this process m times. This is Step 1 of the algorithm shown below. A user
runs the process m times more if it is not satisfactory.

Step 1: 

Step 1: 
best_coefficients = []
while n > 0

coefficients <- random(−1, 1)
all_lines = 0 
for i data_samples:

line = 0
for x data_dimensions:

if coefficients[x] < 0:
line = line – data_dimensions[x]*cos(acos(coefficients[x]))

else:
line = line + data_dimensions[x]*cos(acos(coefficients[x]))

all_lines.append(line)
//update best_coefficients

  n-- 
Step 2: Projects the end points for the set of coefficients that correspond to the highest A value (in the same 
way as in Figure 4) and prints off the confusion matrix, i.e., for the best separation of the two classes.

Step 3: 
Step 3a:

1: User moves around the class separation line.
2:  A new confusion matrix is calculated.

Step 3b:
1: User picks the two thresholds to project a subset of the dataset.
2: n-D points of this subset (between the two thresholds) are projected.
3: A new confusion matrix is calculated.
4: User visually discovers patterns from the projection.

Step 4: User can repeat Step 3a or Step 3b to further zoom in on a subset of the projection or go back to   
Step 1.

Validation process. In the current implementation, GLC-AL uses 10 different
70–30% splits, with 70% for the training set, and 30% for the validation set in each
split. Thus GLC-L has the same 10 tests of accuracy as in the typical 10-fold cross
validation, but 70–30% splits are more challenging than the tasks with 90–10% splits
in 10-fold cross validation.

These 70–30% splits are selected by using the permutation of data. The splitting
process is as follows:

(1) indexing all m given samples from 1 to m, w = (1, 2, …, m),
(2) randomly permuting these indexes, and getting a new order of indexes, π(w).
(3) picking up the first 70% of indexes from π(w),
(4) assigning the samples with these indexes to be the training data,
(5) assigning the remaining 30% of samples to be validation data.
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This splitting process also can be used for a 90–10% split, or other splits.
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