CHAPTER 9

POSTON

Introduction

The Poston Relocation Center (also known as the Colorado River Relocation Center), was located at about 33°57′ N latitude, 14°26′ W longitude, and 320 feet elevation in southwest Arizona’s Yuma County (Figure 9.1). Since 1983, the lands of the former relocation center have been located in La Paz County (La Paz County, n.d.). Poston consisted of three camps—Poston I, Poston II, and Poston III—each spaced about three miles apart. The sites are located along the Mohave Road that extends south from Parker to Ehrenberg. Parker and Arizona highway 95 lie about 13 miles north of Poston I while U.S. Interstate 10 is about 22 miles south at Ehrenberg. Phoenix is 170 miles to the southeast and Las Vegas is 200 miles north. Poston’s namesake was Charles Debrille Poston, Arizona’s first Superintendent for Indian Affairs. Charles Poston was directly responsible for the establishment of the Colorado River Indian Reservation in 1865 envisioning an irrigated agricultural oasis for the Native Americans there (Leighton, 1945; Burton et al., 2002).

The following pages address: 1) the physical and human setting in which Poston was located; 2) why southwest Arizona was selected for a relocation center; 3) the structural layout of Poston; 4) the origins of Poston’s evacuees; 5) how Poston’s evacuees interacted with the physical and human environments of southwest Arizona; 6) relocation patterns of Poston’s evacuees; 7) the fate of Poston after closing; and 8) the impact of Poston on southwest Arizona some 60 years after closing.

Physical Setting

Physiography, Geology and Landforms. The Poston Relocation Center occupied the Sonoran Desert section of the Basin and Range physiographic province (Fenneman, 1931) (Figure 9.2). The Basin and Range consists of north-trending mountain ranges separated by low relief basins. It stretches from southern Oregon and Idaho into northern Mexico, and from eastern California to western Utah (Fenneman, 1931). Poston lay in the north-trending Parker Valley, a portion of the Colorado River floodplain (Figure 9.3). The Big Maria Mountains and the Riverside Mountains border the Parker Valley on the west while the Mesquite Mountains and the Dome Rock Mountains form the eastern boundary of the valley. Elevations in the Big Maria Mountains extend to just over 2,900 feet. Total relief over the entire former center’s lands is only about 29 feet, ranging from 339 feet at the main canal in the north to 310 feet at some abandoned channels near Poston III (Figure 9.4). The gradient over these lands is approximately 3.5 feet/mile. Although imperceptible on the area’s topographic map, the floodplain slopes gently toward the Colorado River Harris (1923).
Figure 9.1. La Paz County, Arizona and adjacent counties. Adapted from Official Arizona Road Map (1975).
Figure 9.2. Poston and the Sonoran Desert within the Basin and Range physiographic province. Map adapted from Fenneman (1931, Plate 1).
Figure 9.3. Cumulative historical map for the Lower Colorado River Basin area including the Poston Relocation Center.
Figure 9.4. Topographic map of Poston Relocation Center and vicinity. Adapted from U.S. Geological Survey Parker, Arizona 1:100,000-scale topographic map.
Figure 9.5. Geology of Poston Relocation Center and vicinity. Adapted from Carr (1991).
The geology of the area differs from the floodplain lowlands to the adjacent uplands. The lowlands consist of Holocene (i.e., past 10,000 years) alluvium on the floodplain of the Colorado River. Late Cenozoic (i.e., 65 million years ago to present) alluvium as well as Cenozoic volcanics, late Mesozoic/early Cenozoic sedimentary rocks, and Mesozoic (i.e., about 240-65 million years ago) metamorphics border the recent floodplain sediments on the east (Figure 9.5). These are mantled by Holocene eolian (i.e., windblown) sediments that likely blew off the Colorado River floodplain. The western edge of the Parker Valley is composed of Cenozoic alluvium, Mesozoic metamorphic and sedimentary rocks, Paleozoic sedimentary rocks, and Precambrian metamorphic rocks (Figure 9.5). The eolian blanket so common east of the Parker Valley is absent here. A series of faults cut the rocks of the Big Maria Mountains west of Poston I (Carr, 1991).

In general, the Parker Valley floor is a very low relief surface. Examined over small areas, however, the land displays more topographic contrast than initially seen. This is especially true of land west of Mohave Road that shows very little relief except for curvilinear depressions. These features are past channels and sloughs of the Colorado River when it once more actively flooded and meandered across its entire floodplain. East of Mohave Road, one sees even less relief. Those very few areas that do show elevation changes end abruptly at U.S. Public Land Survey boundaries indicating the lands have been leveled for farming. In the bigger picture, the Colorado River has a meandering planimetric form and generally flows south along the western margins of the study area.

Weather and Climate. The climate of the area is characterized by hot, dry summers and mild, dry winters. It is classified under the Koppen system as a hot Desert (BWh) (Griffiths and Driscoll, 1982).

The hot summers and mild winters are a product of the mid-latitude setting that ensures a high to moderate sun angle year round while the continental location means clear skies for much of the year. Sunlight is thus used primarily for heating rather than *latent heat* conversions (i.e., evaporation). Further, the low elevation conditions of the site mean that temperatures are generally warmer than adjacent, higher sites. The 1931-1960 average January temperature at Parker was about 51°F while the average July temperature was 93°F (Western Regional Climate Center, n.d.) (Figure 9.6). The mean annual temperature during this same period was nearly 72°F. The average daily maximum temperature exceeds 100°F in June, July, August, and September while average daily minimum temperatures during these same months range from 71°F to 80°F (Nelson, 1986, p.76). The growing season (i.e., last 32°F killing frost of spring to the first killing frost of the fall) at Parker in five out of ten years is 297 days extending from 17 February to 2 December (Western Regional Climate Center, n.d.).

Annual precipitation was approximately four inches/year in Poston during the period 1931-1960 (Figure 9.6). Average precipitation did not exceed 0.6 inches in any month during this period (Western Regional Climate Center, n.d.). The general aridity of the site is the result of the subtropical high pressure zone and the inland location (Paulson et al., 1991). Precipitation
Figure 9.6 Climograph showing 1931-1960 mean temperature and precipitation for Parker, Arizona. Data from Western Regional Climate Center (n.d.).
occurs in the summer when moist, marine air from the Pacific (including the Gulf of California only about 160 miles distant) and the Atlantic (i.e., Gulf of Mexico) moves inland as a result of intense land surface heating and resulting convective uplift. Some of the moist air moving inland may also be the remnants of tropical storms. Most of the summer and early fall precipitation occurs as torrential events (Sellers and Hill, 1974). Winter precipitation is typically associated with fronts and cyclones originating over the Pacific Ocean and driven inland by the jet stream (Paulson et al., 1991). Measurable snowfall only occurred once in the previous 70 years at Parker–13 December 1932 (Sellers and Hill, 1974). Two significant droughts occurred during the 1931-1960 period–1932-1936 and 1942-1964. The latter was the most significant to strike the area in the previous 350 years (Paulson et al., 1991). With annual lake evaporation at approximately 84 inches/year during the 1946-1955 period, crops in the area need ample irrigation and salts may build up in soils as a result of these evaporated waters (Meyers, 1962). Relative humidity is higher than one might expect in this inland desert because of proximity to the Colorado River (Burton et al., 2002). However, average values (i.e., 18-46% at the coolest time of day as opposed to 11-35% at the hottest time of day) were still low in comparison to other inland sites (Sellers and Hill, 1974).

The eolian sediments east of the Colorado River floodplain suggest that prevailing, or at least the geomorphically most significant, winds are from the west. Strong winds ranging to 75mph may occur in summer and in winter (Nelson, 1986).

Soils. The soils of the Parker Valley area are a function of the five soil forming factors–i.e., parent material, topography, climate, biota, and time. Parent material is primarily alluvium associated with the Colorado River floodplain. Alluvial soils range from sand to clay textures and are deep (>60 inches). The study area’s soils are well to excessively drained. The arid climate concentrates salts via evaporation thus all soils are alkaline and nearly all have the potential to be saline. The native desert scrub vegetation of the area means that little organic matter accumulates atop or within the soils. There has been little time for soil development because of the geologically active nature of the floodplain (Nelson, 1986).

Reflecting their youth and resulting immature development, all soils of the study area are floodplain **entisols** (i.e., Aqualt, Cibola, Gadsden, Gilman, Glenbar, Holtville, Kofa, Lagunita, Meloland, and Vint series) (Figure 9.7) (Nelson, 1986). Soils are either Land Capability Classification (LCC) I (i.e., few limitations that restrict their use--Gilman and Glenbar series), II (i.e., some limitations that reduce the choice of plants or require moderate conservation practices--Cibola and Meloland series), III (i.e., severe limitations that reduce the choice of plants or require special conservation practices--Gadsden and Vint series, and Holtville-Kofa complex), and IV (i.e., very severe limitations that restrict the choice of plants, require very careful management, or both--Glenbar and Lagunita series). The limitations of the LCC II, III, and IV soils are associated with problems within the rooting zone, especially salinity or sodium issues (Nelson, 1986; U.S. Natural Resources Conservation Service, n.d.).
Figure 9.7. Soils of the Poston Relocation Center and vicinity. Data from Nelson (1986).
Water. The lands of the Poston Relocation Center are situated in the Colorado River Watershed. The Colorado River originates in the mountains of northern Colorado and flows southwest across Colorado, Utah, and Arizona until bending south to form the Arizona - California border. Prior to the completion of Hoover Dam upstream in 1935, Parker Valley was inundated by annual floods that began in late April or early May and continued into the summer, often reaching peak discharge in June (Stewart, 1966c). These floods are the source of the alluvial parent materials, hence immature alluvial soils, in the Parker Valley (Metzger et al., 1973). Discharge on the Colorado River just below Parker Dam over the period 1936-1960 averaged 13,969 ft3/second with higher than average discharge occurring in 1941-1950, and again in 1952, 1953, and 1958 (Figure 9.8) (USGS, n.d.). At a local scale, a tropical disturbance dumped nearly three and one-half inches of precipitation on the Parker Valley on 5 September 1939 resulting in massive flooding and $10,000 in damages to area crops (Sellers and Hill, 1974). Very low discharge was recorded in 1935-1938, and again in 1956 (USGS, n.d.). Colorado River water at Hoover Dam about 150 miles upstream from Parker averaged a specific conductance of 977 micromhos and a sodium-absorption ratio of 12 thus had a high salinity hazard and a medium sodium hazard for irrigation (U.S. Department of Agriculture, 1954; U.S. Geological Survey, 1955).

Other than the Colorado River, the Parker Valley is naturally dry–i.e., no springs or natural reservoirs (i.e., “tanks”) were shown on an early map of Colorado River Indian Reservation water resources (Ross, 1923). However, 1940-1941 groundwater levels in the Poston area were very near the surface and declined from north to south reflecting irrigation patterns as well as the land surface. For example, the ground surface elevation near the north end of the former center was about 330 feet above sea level (asl). The groundwater elevation there was between 310 and 315 feet asl. Conversely, ground surface and groundwater elevations at the south end of the former center were 313 and 290-295 feet asl, respectively (Metzger et al., 1973). Groundwater has generally medium to high salinity levels. Shallow groundwater in the vicinity of Poston showed a specific conductivity of approximately 988-2061 micromhos in the shallow, 575-3933 micromhos in the intermediate zone, and 579-657 micromhos in the deeper units of groundwater (Metzger et al., 1973).

Biota. The Poston Relocation Center lay in the American Semi-Desert and Desert Ecoregion of the northern portion of the Sonoran Desert (Bailey, 1994) (Figure 9.9). Vegetation patterns in the area are a function of climate, proximity to the Colorado River, and associated soil moisture, as well as soil chemistry and humans. Natural vegetation of the Colorado River floodplain can be separated into more xeric species on the dry, upper surfaces and more hydric species on the lower, more moist surfaces closer to the river. Upper surfaces have creosote bush (Larrea tridentata), mesquite (Prosopis pubescens), catclaw (Acacia greggii), and various cacti. Willow (Salix spp.), various rushes, arrowweed (Pluchea sericea), and cottonwood (Populus spp.) grew nearer water (Harris, 1923; Stewart, 1983; Harris, 1999).

Large native mammals are not common in this area but may include kit foxes (Vulpes macrotis) and coyotes (Canis latrans). Western spotted skunks (Spilogale gracilis), Merriam kangaroo mice (Dipodomys merriami), pocket mice (Chaetodipus penicillatus), antelope ground squirrel
(Ammospermophilus leucurus), and roadrunners (Geococcyx californianus) are also present here. Reptiles include a variety of snakes and lizards (Bailey, 1995; Harris, 1999). Humpback chub (Gila cypha) and striped mullets (Mugil cephalus) are the common, traditional fish species in the Colorado River (Stewart, 1983).

Human Setting

Race and Ethnicity. Southwestern Arizona, including the Parker Valley, lies in the Southwest Culture Area (Waldman, 2000). Over time, numerous Native American tribes have lived in the area. As of first contact with the Spaniards, the portion of the Colorado River extending from present-day Ehrenberg, Arizona to Fort Mohave was the traditional region of the Mohave Indians (Figure 9.3) (Stewart, 1983).

The first EuroAmerican to travel through the area was Don Juan de Onate, the Spanish governor of New Mexico, in 1604-1605. Subsequently, Franciscan padre Francisco Garces encountered
the Mohaves in 1776. Mohaves likely assisted the Yuma Indians to the south in driving the

Figure 9.9. Ecoregion map showing Gila River’s location within the American Semi-Desert and Des

sert region.

Adapted from Ballew (1995, Fdout Map).

Legend

240 Marine Division
242 Pacific Lowland Mixed Forest
M242 Marine Region Mountains
M242 Cascade Mixed Forest/Alpine Meadow
260 Mediterranean Division
261 California Coastal Chaparral Forest and Shrub
262 California Dry Steppe
263 California Coastal Steppe and Mixed Forest
M260 Mediterranean Region Mountains
M261 Sierran Steppe/Mixed Forest/Alpine Meadow
M262 California Coastal Range Open Woodland/Shrub/Coniferous Forest/Meadow
310 Tropical/Subtropical Steppe Division
313 Colorado Plateau Semi-Desert
315 Southwest Plateau and Plains Shrub and Dry Steppe
M310 Tropical/Subtropical Steppe Region Mountains
M313 Arizona-New Mexico Mountains Semi-Desert/Open Woodland/Coniferous Forest/Alpine Meadow
320 Tropical/Subtropical Desert Division
321 Chihuahuan Semi-Desert
322 American Semi-Desert and Desert

320 75 150 225 300 Miles

330 Temperate Steppe Division
331 Great Plains-Palouse Dry Steppe
332 Great Plains Steppe
M330 Temperate Steppe Region Mountains
M331 Southern Rocky Mountain Steppe/Open Woodland/Coniferous Forest/Alpine Meadow
M332 Middle Rocky Mountain Steppe/Coniferous Forest/Alpine Meadow
M333 Northern Rocky Mountain Forest-Steppe/Coniferous Forest/Alpine Meadow
M334 Black Hills Coniferous Forest
340 Temperate Desert Division
341 Intermountain Semi-Desert and Desert
342 Intermountain Semi-Desert
M340 Temperate Desert Region Mountains
M341 Nevada-Utah Mountains Semi-Desert/

Poston Relocation Center
Spaniards from the country by the late 18th century after relations soured with the Spaniards. Few, if any, ensuing interactions apparently occurred between the Mohaves and the Spaniards or the subsequent Mexicans (Stewart, 1966a; Walker and Bufkin, 1979; Laylander, 2004). American fur trappers and traders traveled through the country beginning in 1826 and included Jedediah Smith, James O. Pattie, Kit Carson, and Peter Skene Ogden (Stewart, 1966b). Government railroad surveyors also passed through the area in 1851 as did American steamboat crews in 1858 (Sitreaves, 1853; Stewart, 1969). During all of these contacts, the Mohaves were the primary occupants of the Parker Valley area but were in frequent conflict with other tribes in the area including the Chemehuevi. By the mid-19th century, the Chemehuevi Indians had settled on the west side of the Colorado River in the vicinity of present-day Parker with the tacit approval of the Mohave (Stewart, 1968; Stewart, 1969).

The sovereignty of the Mohaves began to change after they attacked a wagon train bound for southern California in 1858 on the Beale Trail. This attack led to skirmishes with U.S. soldiers and the establishment of a military post later named Fort Mohave in the Mohave Valley north of present-day Parker in 1859. A resounding defeat at the hands of U.S. troops in a subsequent 1859 battle resulted in the Mohaves ending all hostilities with the whites (Steward, 1966a; 1969).

The discovery of gold at La Paz in the foothills of the Dome Rock Mountains south of Parker forced Arizona’s Superintendent of Indian Affairs Charles Poston to recommend that a reservation be established in the Colorado River Valley (Figure 9.3) (Stewart, 1969). The Colorado River Indian Reservation was established in 1865 as a reserve for the tribes of the Colorado River and its tributaries (Fontana, 1963). As early as 1931, Colorado River Indian Reservation Superintendent C.H. Gensler was making plans to bring more Indians onto the reservation as a way to help other impoverished Indians and as a way to utilize the ample irrigable lands of the reservation (Fontana, 1963). The constitution and by-laws of the Colorado River Indian Reservation prevented this from occurring without the agreement of the Tribal Council. However, in 1939, Commissioner of Indian Affairs John Collier gave the tribal council an ultimatum—i.e., either agree to settle the impoverished colonist Indians or risk losing the land to whites because of the underutilized lands of the reservation at the time (Fontana, 1963). On the eve of Japanese relocation to the Parker area, the Native American population of the Colorado River Indian Reservation was 1,200 (Okimoto, 2001).
The first person of Japanese descent to enter southern Arizona was likely Hachiro Onuki, an Issei (i.e., first generation Japanese American born in Japan) who quickly realized the financial advantages of providing water to Tombstone, Arizona silver miners in the 1870s. The profits from Onuki’s venture enabled him, along with other investors, to start the Phoenix Illuminating Gas and Electric Company in 1886, and subsequently Garden City Farms in 1900 (Iwata, 1992; Walz, 1997). Onuki thus played a key role in Arizona’s mining industry, the development of Phoenix, and in agricultural beginnings in the Salt River Valley. Subsequently, many of the Japanese men who moved to the state for employment opportunities were able to save money and start their own businesses. With their increasing prosperity, many married, fathered children, and generally put down roots, especially in south central Arizona (Walz, 1997). The Japanese American population in Arizona thus climbed over time with most located in Maricopa County (Walz, 1997) (Figures 9.1 and 9.10).

The total Japanese American population of Yuma County, the adjacent three Arizona counties–Maricopa, Mohave, and Yavapai– and the three contiguous California counties–Imperial, Riverside, and San Bernadino– (Figure 9.1)–generally mirrored the overall Arizona pattern through the 1930 census. However, the population of this seven county area dropped by nearly 30% to 3,032 by 1940 (U.S. Census Office, 1895; 1901; U.S. Bureau of the Census, 1913; 1922; 1932; 1943a; 1943b). It is not clear why the drop occurred between 1930 and 1940 but it could have been related to the same anti-Japanese hostilities that surfaced in Maricopa County (see CHAPTER 10–GILA RIVER). When examined alone, Yuma County, subsequent home of the Poston Relocation Center, had few Japanese Americans through time with 32 first showing up in the 1910 census and a high of 49 in 1930. By 1940, only 13 Japanese Americans remained (U.S. Census Office, 1895; 1901; U.S. Bureau of the Census, 1913; 1922; 1932; 1943a). Following the bombing of Pearl Harbor, the West Coast military exclusion zone included a narrow strip in southern Arizona. State residents put pressure on the military to

expand the zone to include more of the state so it was changed to pass through Phoenix on U.S. Highway 60 (now known as Grand Avenue). The refined military exclusion zone thus included the area encompassed by the Poston Relocation Center. Those Japanese Americans living north of U.S. 60 could remain in that area but could not cross south of the line without a special permit. Those that lived south of the line were sent to the Mayer Assembly Center, near Prescott in northern Arizona (Russell, 2003).

Economic Geography. The ancestors of the Mohave Indians lived along the lower Colorado for at least 1,000 years in a lifestyle akin to that of the historic Mohave (Stewart, 1969). The first solid record of the economic geography of the Parker area comes from Onate’s 1604-1605 expedition. A Franciscan friar on that expedition noted that the Mohaves were growing corn (i.e., maize), beans, and pumpkins as well as gathering mesquite beans and grass seeds in the Colorado River Valley. These crops were produced using *floodwater farming* whereby the spring and early summer floods replenished soil moisture and nutrients in the floodplain adjacent to the Colorado River. Crops were planted soon after the recession of the floodwaters where they ripened quickly in the reinvigorated, moist soil under the intense summer sun. Other crops grown in the area were melons, sunflowers, gourds, and tobacco. Following contact with the Spaniards, the Mohaves grew wheat and cowpeas (i.e., black-eyed peas). The winter rains sometimes led to a second planting of corn or pumpkins in February or March. Other plants were semi-cultivated including crowfoot grass, panic grass, and curly dock. The Mohaves further supplemented their agricultural foodstuffs with wild plants (e.g., mesquite beans) and small game animals (e.g., rabbits) (Stewart, 1966a; 1966c).
When the decision was made to put the Colorado River Indians on a reservation, Superintendent of Indian Affairs Poston, engineer Adolphus Waldemar, and Mohave subchief Ireteba traveled the river to choose a site that would be suitable for irrigated agriculture. Over the objections of Ireteba, Poston and Waldemar chose the current site of the reservation based on their estimates of reclamation costs per acre. However, Ireteba did not like the site because of soil and river flow patterns; rather, he favored a site upriver nearer Fort Mohave and the Mohave Valley. Others also pointed out problems with this site including the alkaline soils, need for daily irrigation, and the huge task of getting water out of the Colorado River channel and onto the land (Caylor, 2000). Nevertheless, the Colorado River Indian Reservation was established in 1865 as a reserve for the tribes of the Colorado River and its tributaries (Fontana, 1963). The reservation size was increased in 1873 and again in 1874 to include lands along the Arizona and California sides of the Colorado River (Walker and Bufkin, 1979). The Colorado River Indian Reservation was designed as an area where different tribes could attempt to support themselves through irrigated agriculture and not be in the way of EuroAmerican expansion (Caylor, 2000).

However, to confine these tribal members to a reservation and to expect them to support themselves with irrigated agriculture meant that the U.S. Government needed to provide a major irrigation system. Charles Poston thus received a $120,000 appropriation from Congress to build the first federally sponsored irrigation project on the Colorado River Indian Reservation in 1865. Mohave Indians completed a canal that brought irrigation water to Indian lands in 1875 but the project soon failed because of insufficient water at the headgate, the unstable nature of the sandy soils in which the canal flowed, and the alkaline/saline soils that were irrigated. Subsequent irrigation schemes were derailed when the pumps used at the headgates were destroyed by the heavily silted water. Wells and water wheels also ultimately failed in putting water on the land. The Mohave Indians survived by returning to their floodwater farming roots or by hand watering their farm plots. However, the total irrigated acreage farmed on the reservation only averaged about 400 acres in the 1890s (i.e., 215 acres via traditional methods and 186 acres by pump-driven irrigation). With so little land farmed, the Mohave were forced to depend on meager government rations or work away from the reservation to fend off starvation. Spurred not by Indian starvation but by fear that Mexico would appropriate un-used Colorado River waters, Congress provided another $50,000 for construction of a new pumping plant in 1910. At about the same time that the new pumping plant was completed, Colorado Indian Reservation Indians received 10 acre land allotments based on an amended version of the 1904 Indian Allotment Act. While the pumping plant apparently worked, new issues arose—i.e., the ground was becoming waterlogged and alkaline/saline because of the addition of irrigation waters and subsequent evaporation (Caylor, 2000). By 1927, 20% of the original Indian allotment lands were of no use because of the waterlogging and alkalinity/salinity problems (Metzger et al., 1973). By this time, the U.S. Government had spent nearly $1 million on irrigation on the Colorado River Indian Reservation (Caylor, 2000).

The high costs of clearing and leveling Parker Valley farmlands led to the leasing of allotted lands by non-Indian farmers. The Office of Indian Affairs had initiated a policy of leasing Indian lands to non-Indian lessees beginning in the 1890s as a way to provide the reservation with much
needed cash. By 1918, lessees farmed more than twice the land cultivated by Indians. This gap had widened by 1925. Those Indians who could afford to improve their ground, and whose ground was somewhat resistant to waterlogging and alkalinity/salinity issues, were able to earn decent money especially with cotton between 1917 and 1922. As a way to improve the conditions for Native Americans on the Colorado River Indian Reservation, private and state officials worked on a plan beginning in 1914 that involved the combined use of groundwater and Colorado River floodwater to irrigate more lands. This would directly help Native American farmers. Further, the funds gained from leasing these newly irrigated lands to non-Native Americans would provide much needed funds for programs to help Native American families. However, the U.S. Government balked at the benefits of such a project over larger scale development of Colorado River water sources for the lands (Caylor, 2000). This plan was not helped by the poor results from limited attempts at using groundwater for irrigation in the area just south of Parker (Metzger, Loeltz and Irelna, 1973). However, these discussions helped spark the Boulder Canyon Project (i.e., Hoover Dam) that would provide irrigation water storage for the lower Colorado River when it was completed in 1936 (Works Progress Administration, 1940; Caylor, 2000). While waiting for completion of Hoover Dam, wells were drilled in the northern part of the Colorado River Indian Reservation in 1934 to lower groundwater thus reduce waterlogging. These were used until 1937 or 1938 when the incising channel of the Colorado River, caused by construction of Hoover Dam and the damming of the Colorado River sediments, helped lower groundwater tables throughout the floodplain. The completion of the Headgate Rock Diversion Dam in late June 1942 ended the sporadic pumping attempts that had gone on for years. At the time of its completion, the irrigated lands on the reservation were primarily in the two townships north of Poston (Metzger et al., 1973; U.S. Bureau of Reclamation, n.d.). Thus, the agricultural heritage of the area long predated 1942 and was limited to Indian and subsequent leasee farming. Apparently, Japanese Americans were not involved in agriculture in the Parker Valley prior to 1942; however, they were growing spring and fall lettuce as well as cantaloupes in the Yuma Valley to the south in the 1930s (Iwata, 1992).

In addition to agriculture, transportation has long been a key form of economic activity along the lower Colorado River. Early Spanish explorers and American fur trappers and traders made use of the Colorado River Valley, its water, and the Mohave’s produce in their travels. Parker, the largest town on the Colorado River Indian Reservation, owes its existence to transportation. Parker formed as a result of the Atkinson, Topeka, and Sante Fe Railroad coming through the area in 1905-1906 (Walker and Bufkin, 1979; Barnes, 1988). It is likely that Japanese Americans worked on the railroad or in the area during railroad construction. In the early 20th century, Parker was the only town on the Colorado River Indian Reservation (Ross, 1923).

On the eve of the evacuation of Japanese Americans to Poston, Parker had a population of 1,200 including a significant number of Native Americans. The town served as a regional trade center for the mining and grazing interests in the area (Works Progress Administration, 1940). At that time, Arizona highways 72 and 95 jointly passed through Parker as did the Atkinson, Topeka, and Sante Fe Railroad (Works Progress Administration, 1940, Appendices; Bailey, 1971). The Indian Agency (i.e., “Silver City”) was located one mile south of Parker to serve the Colorado
River Indian Reservation, and subsequently would serve as the administrative headquarters for the Poston Relocation Center (Leighton, 1945).

Why this Location?

Arizona was likely chosen as a state in which to locate a relocation center because it lay well inland of the Pacific Coast. At least five sites in Arizona were considered for relocation centers—Beardsley near Phoenix, Cortaro Farms near Tucson, the Fort Mohave Indian Reservation on the Colorado River, the Gila River Indian Reservation south of Phoenix, and the Poston site near Parker on the Colorado River Indian Reservation. The former three were rejected because they would be either too expensive to build or too close to key military installations (Madden, 1969; Burton et al., 2002). Ultimately, the Colorado River Indian Reservation and the Gila River Indian Reservation sites were chosen as Arizona’s relocation centers. These Indian reservation sites were two of eight reservation sites offered up by Commissioner of Indian Affairs John Collier who believed that the U.S. Department of Interior’s past experience in dealing with Native Americans made it a logical choice to deal with the evacuated Japanese Americans (Bernstein, 1991).

The proposed 71,600 acre Poston Relocation Center site lay entirely on Colorado River Indian Reservation lands thus it would become “...a reservation within a reservation” (U.S. Army–Western Defense Command, 1943; Estes, n.d.). The site was advantageous to the WRA because of the available space, availability of Colorado River irrigation water, potential for agriculture, and access to highways and railroads. While the Atkinson, Topeka, and Sante Fe Railroad as well as Arizona highways 72 and 95 came through Parker, the center was sufficiently isolated as to not pose a threat to residents of the area.

The site was chosen by the U.S. Army and the Office of Indian Affairs in March 1942 over the objections of the Colorado River Indian Reservation tribal council, Superintendent of the Colorado River Indian Reservation agency Charles Gensler, and assistant to the Commissioner of Indian Affairs Fred Daiker. The tribe wanted no part in inflicting injustices on the Japanese Americans similar to what they had suffered (Okimoto, 2001; Burton et al., 2002). However, the tribal council knew that outward opposition to the relocation center could lead to condemnation by, thus loss of the land to, the War Relocation Authority (WRA) (Flores, 1994). Gensler did not want the Japanese because they would get in the way of his proposed guayule (i.e., a plant used to create synthetic rubber) growing plan (Bernstein, 1991). Daiker also saw the placement of the Japanese on the reservation as yet another injustice to American Indians (Bernstein, 1991). The Office of Indian Affairs was willing to host a relocation center at the site as a way to develop the reservation’s irrigation system, subjugate the many potential acres of farmland (i.e., of 100,000 potentially irrigable acres, only 7,000 were currently being farmed), create the necessary living infrastructure for existing and “colonist” Indians, and ultimately enhance economic development, much of which would be paid for by President Roosevelt’s emergency war fund. The Japanese could provide the labor to accomplish these goals (Okimoto, 2001). The selection process was
aided by the Office of Indian Affairs promises that the developed farmlands would benefit tribes in addition to the Mohave and Chemehuevi (Cravath, n.d.).

Building Poston

A crew headed by renowned contractor Del Webb began construction of Poston I on 27 March 1942 (Burton et al., 2002). They cleared the land for Poston I in one day, and the crew of 5,000 men completed the camp in less than three weeks. Because pine lumber was in short supply, heart redwood was used for the construction of many barracks walls; however, the redwood shrunk as it dried in Poston’s intense heat leaving large gaps in the walls. Webb’s builders had to go back and cover the cracks with “millions of feet” of thin wood strips (Finnerty, 1991, p. 41-43). The first group of Japanese Americans arrived on 8 May 1942 to help prepare the center for the subsequent arrival of the main body of evacuees (Burton et al., 2002). Within the next three weeks, 7,450 evacuees would move into Poston (Leighton, 1945). Four months later, Webb’s company had completed Poston II and III (Finnerty, 1991).

Poston Relocation Center consisted of three main camps–Poston I, Poston II, and Poston III, each of which was laid out in a rectangle that was truncated on its east side by the Mohave Road (Figure 9.11, 9.12, 9.13, 9.14, and 9.15). The blocks within were separated by numbered east-west running streets, and lettered north-south oriented streets. A single fence surrounded the
Figure 9.11. Overall map of the Poston Relocation Center. Adapted from Burton et al. (2002, p. 218).
three camps but unlike most of the other relocation centers, Poston did not have guard towers along the fence (Burton et al., 2002). It is unclear why the WRA built three smaller camps rather than one larger center.

Poston I was the northernmost and largest of the three camps (Figure 9.12). It stretched north-south and lay between the Main Drain to the west and the Mohave Road to the east. The main portion of this camp had 27 residential blocks for evacuees as well as administration offices, staff housing areas, warehouses, hospital, fire station, ice storage, butcher shop, maintenance shops, a crematory, and a military police compound. Poston I had elementary and high school complexes.
constructed of adobe because lumber was in short supply and because the Office of Indian Affairs wanted structures that would last for subsequent Native American students (Okimoto, 2001; Burton et al., 2002). A sewage treatment plant, a domestic water pumping plant, a chicken farm, and a farm nursery also served the camp. Irrigation ditches ran through Poston I to provide water for landscaping, victory gardens, and swimming pools. A large outdoor stage was also present. In addition to camp operations and the agricultural program, camouflage net, tofu, and box factories located in Poston I provided employment opportunities. School and community athletic fields were located in various vacant blocks and firebreaks (Burton et al, 2002).

Poston II was located along Mohave Road between Poston I and III (Figure 9.14). It had 18 evacuee residential blocks, an elementary school, a high school, administration area (including cold storage, medical clinic, fire station, post office, and office buildings), staff housing, garage
Figure 9.14. Detailed map of Poston II, Poston Relocation Center. Adapted from Burton et al. (2002, p. 224).
area, warehouses, a camouflage net factory, chicken farm, farm nursery, domestic water supply, and a sewage treatment plant. Lateral A Canal bisected the camp and was diverted into an excavated depression to create a large swimming pool (Burton et al., 2002).

Poston III was the southern-most of the three camps, located at the end of Mohave Road (Figure 9.15). Like Poston II, it included 18 evacuee blocks as well as administration area including a medical clinic and fire station, garage area, camouflage net factory, warehouse area, elementary school, high school, swimming pools, motor pool, outdoor stage, dry goods store, chicken farm, farm nursery, and sewage treatment plant (Burton et al., 2002). Unlike Poston I and II, Colorado River irrigation water was not available within Poston III (Sharp, 1945).

Each residential block in Poston I, II, and III consisted of 14 barracks, one mess hall, two latrine-shower buildings, one laundry building, one ironing building, one community services (i.e., recreation) building, and a fuel oil shed and was designed to serve 250-300 evacuees (Figures 9.12, 9.14, and 9.15) (Harris, 1999; Burton et al, 2002). Each 20 feet x 100 feet barracks consisted of four to six single-room apartments ranging in size from 16 feet by 20 feet, 20 feet by 20 feet, and 24 feet by 20 feet (Estes and Estes, 1996; Okimoto, 2001). Evacuee barracks were constructed differently than those at all other centers, presumably because of the extreme summer heat in southwestern Arizona. While all had tarpaper covering their sides and roofs, each had a double roof to act as insulation against the extreme heat at the site (Burton et al., 2002). However, these double roofs were apparently prone to blowing off in windstorms (Estes and Estes, 1996). Barracks were elevated off the ground on wooden posts sitting on concrete footings (Leighton, 1945). Apartment partitions stopped before reaching the barracks roofs thus sound traveled the length of the barracks (Fujita-Rony, 2005). The WRA provided cots, straw-filled mattresses, two U.S. Army blankets, a single light bulb suspended from the ceiling, and later, a heating stove (Figure 9.16) (Harris, 1999). All other furniture needed to be made or purchased by evacuees (Fujita-Rony, 2005). Roads and walkways within the center were graveled (Staff, 30 January 1943; 16 March 1943). Ultimately, roads were oiled (Staff, 25 July 1943).

Domestic water came from wells located at each of the camps. Despite the relatively high salinity of the area’s groundwater (see Water section above), evacuee accounts do not mention the undesirability of this water for human use. Domestic water was stored in large above-ground storage tanks before being piped to the various blocks of the camps (Burton et al., 2002). Irrigation water came from the Colorado River via the Headgate Rock Diversion Dam and the Main Canal (Figure 9.3) (Staff, 1 August 1942).

Materials and personnel coming to the center typically arrived by train at Parker, then were moved to the center by truck or bus. A warehouse facility was built along the railroad in Parker to provide temporary storage for the items arriving by train (Burton et al., 2002). Evacuees subsequently constructed a highway (i.e., Mohave Road) from the north to the south end of the center (Staff, 25 July 1943).
Origins of the Evacuees

Evacuees came from California via the Salinas (3,482), Santa Anita (1,556), and Pinedale (697) assembly centers, and Arizona from the Mayer (246) Assembly Center (Figure 9.17). Additionally, eight other assembly centers each contributed less than 100 evacuees (U.S. Army–Western Defense Command, 1943). Specifically, evacuees came from California’s Los Angeles (2,750), Tulare (1,952), San Diego (1,883), Orange (1,636), Fresno (1,590), Imperial (1,512), Monterey (1,506), Santa Cruz (1,222), Sacramento (561), Riverside (503), Santa Clara (463), San Benito (430), San Bernadino (374), and San Luis Obispo (104) counties (Figure 9.17) (U.S. War Relocation Authority, 1946). The largest number of evacuees (11,738) came directly to Poston, primarily from California’s San Joaquin and Imperial valleys, without first being
incarcerated in assembly centers (Japanese American National Museum, n.d; Bailey, 1971). Others came directly to Poston from North San Diego County (Estes and Estes, 1996). Given the discrepancy between the California county and assembly center numbers, it is likely that most or all of those who were direct evacuees were from California. Arizona’s Maricopa County contributed 213 evacuees and another 26 statewide, and Washington, Oregon, and “other states” provided 26 (U.S. War Relocation Authority, 1946). The population of the center was mostly rural (Japanese American National Museum, n.d).

The first evacuees arrived at Poston on 8 May 1942 (U.S. War Relocation Authority, 1946). Among them was famed modernist artist Isamu Noguchi (Maeda, 1994). The early evacuees traveled to the center entirely by bus. Later evacuees came to the center by train via Barstow,
California to Parker, and from Parker to Poston on buses (Bailey, 1971; Estes and Estes, 1996). Some evacuees also arrived in their own automobiles (Ota, 1984). Because early arrivals at Poston, like those at Manzanar, came directly from their homes to the center, Poston was considered an Assembly Center and a Relocation Center (Daniels, 1972). The last evacuees to arrive were from Santa Anita in southern California on 26 October 1942 (U.S. Army–Western Defense Command, 1943). With a maximum population of 17,814 reached in early September 1942, Poston was Arizona’s 3rd largest city behind Tucson, and Phoenix (Staff, 30 September 1942; U.S. War Relocation Authority, 1946). The Japanese American population outnumbered the Native American population on the reservation by approximately 15 to 1 (Estes and Estes, 1999). As of 1 January 1943, approximately 67% of Poston’s residents were American citizens (U.S. War Relocation Authority, 1946).

Interaction of Evacuees with Southwestern Arizona’s Environments

Physical Environment. Evacuee interactions with the physical environment were primarily shaped by heat, wind, dust, and the overall harsh nature of the setting. The first impressions of the center were telling for many individuals. The first word that came to mind for a young school teacher was “bleakness” (Harris, 1999, p. 20). An evacuee described it as:

The bus trip to Poston III was long and dusty. So dusty that the sky was blotted out completely. At first we tried to keep the windows of the school bus that was transporting us closed, but it was so hot - over 100 degrees that people, especially the older people, and the kids, were getting sick. So we opened the windows. Immediately everyone was covered with dust. When Kiyo Ochi and her group got off the bus everyone was covered by this thick layer of dust. I know you won’t believe this, but its really true, friends couldn’t recognize each other.

Estes and Estes (1996, p. 130)

The first impressions of another evacuee were similar:

Extreme heat that can melt iron. No trees, no flowers, no singing birds, not even the sound of an insect. All at once a strong wind began to blow, sandy dust whirled into the sky, completely taking the sunshine and light from us. That night a full moon shone in the wilderness.

Estes and Estes (1996, p. 131)

The heat was perhaps the most noticeable aspect of the center, especially given that most of the evacuees were originally from coastal California. The highest temperature of 1942 or 1943 was 121°F in July 1943. The average high temperature for June, July, August, and September 1943 exceeded 100°F with July at 111°F (Staff, 7 December 1943, p. 3)! Evacuees initially tried to keep cool by using water to wet themselves, their bedding, and their apartment floors (Girdner
and Loftis, 1969). The media reported that cellars excavated beneath evacuee barracks were used for hoarding food for an imminent Japanese invasion. However, one evacuee stated “In fact, we were digging cellars under the barracks to try to stay cool. We would sit around in the hole and play cards to while our time away. That is where I learned to play pinochle” (Hane, 1990, p. 573). While most of the administrative buildings had evaporative coolers, the evacuees were expected to go without or purchase their own. As of May 1943, approximately 58% of the barracks apartments had some form of cooler (Staff, 18 May 1943). The common “garden ponds” of the camps, combined with the shade of landscaped plants, also provided a measure of relief from the heat. Luckily for the evacuees, mean monthly temperatures for the warmest season months of April-September during 1942-1945 were slightly cooler than the 1931-1960 average (Western Regional Climate Data Center, n.d.). The positive aspects of the heat were that activities could occur outside throughout much of the year.

While the winter average temperatures were considered mild, temperatures could be uncomfortably cold, especially in barracks lacking insulation or even wall board. Oil and kerosene stove installation did not begin until after cold weather arrived in late fall 1942 (Staff, 17 December 1942). Until then, evacuees built outdoor bonfires out of scrap lumber to keep warm (Okimoto, 2001).

The relocation center experienced slightly drier conditions than normal during its four years in existence. Overall, the mean annual precipitation for 1942-1945 was nearly 0.5 inches less than during the 1931-1960 climate normal (Western Regional Climate Data Center, n.d.). However, severe thunderstorms brought torrential rains and damaging winds (see below). One such thunderstorm resulted in the flooding of Poston I streets to a depth of three to four inches (Staff, 24 July 1942). Another “melted” adobe bricks at the amphitheater, washed out roads, and flooded various portions of Poston III. Illustrating the isolated nature of thunderstorms, little precipitation or wind was received at Poston I or II during the latter event (Staff, 18 August 1943).

The winds, known as “Poston Zephyrs”, seemed to blow all of the time (Estes and Estes, 1996). Combined with the recently disturbed soils, duststorms (i.e., “Arizona Fog”) were a common occurrence, especially in the winter (Girdner and Loftis, 1969; Tsuchiyama, 1990). Winds blew so hard at times that the resulting duststorms halted outside activities (Staff, 19 August 1942). Seventy mile per hour winds associated with a severe thunderstorm destroyed the roofs of 41 barracks at Poston I in July 1942 (Staff, 24 July 1942). Dust found its way into everything making life more difficult for people used to cleanliness (Estes and Estes, 1996). The dust problem was at least partially resolved through the installation of a linoleum-like floor covering in the barracks (Okimoto, 2001). Evacuee landscaping must have also served to hold down the loose soils of the site. Wetting soils and planting vegetative cover were the main ways of trying to anchor the soils thus reducing blowing dust (Figure 9.20). It was because of the intense summer heat and the ever-present dust that Poston I, II, and III earned their nicknames “Roaston”, “Toaston”, and “Duston” (Cates, 1980, p. 98).
The floodplain soils were also an issue. Buses carrying evacuees from Parker to Poston got stuck in the soft dust of the road (Okimoto, 2001). One evacuee commented on her arrival that “We are at Camp No. 3 (i.e., Poston III). It is not quite complete. It is so sandy that everyone’s hair looks gray” (Estes and Estes, 1999, p. 23). Another evacuee commented: “Not much social visiting going on at all. The afternoons are still too hot to do so, and who wants to walk around in dust up to the ankles” (Estes and Estes, 1999, p. 25). The center’s soils were also one of the raw materials of the adobe that the evacuees used to construct the school buildings in each of the three camps (Okimoto, 2001).

Evacuees interacted with wildlife as well. Rattlesnakes, scorpions, and even gila monsters were encountered by evacuees and mentioned in the pages of the center newspapers, the Official Daily Press Bulletin and the Poston Chronicle (e.g., Staff, 7 August 1942; 8 October 1942; Staff, 22 October 1942).
While the above suggests that the Sonoran Desert of the Poston Relocation Center was a foreign, stark, and harsh place, some found it beautiful. Caucasian teacher Catherine Embree Harris (1999, p. 19-20) described it this way:

In the early morning, the rising sun tinted the outlines of the eastern mesas in gold, then sent piercing rays to streak the western ones until the heavens were awash with brilliant light. The sky was wide and limpid. The evening sky changed from brown to pale to violet, and back to deep purple and into darkness. Gradual alterations, undramatic, but beautiful.

Agriculture. The goals of Poston’s agricultural program were to feed the residents of Poston, feed the evacuees in the other relocation centers, provide food and other crops for the war effort, and to sell any surpluses on the open market, all while providing employment opportunities for evacuees (Myer, 11 July 1942; Sharp, 1945). By November 1942, however, the goals were changed to focus production solely on meeting the needs of the center (Sharp, 1945). Further, the original establishment of the center on the Colorado River Indian Reservation was predicated on the evacuees “subjugating” (i.e., clearing and leveling) a large amount of previously un-farmed land that would serve as the basis for an enlarged Indian farming program following the war (Okimoto, 2001). Therefore, 25,000 acres were initially dedicated to agricultural enterprises, and much of the hopes of the center were placed on agriculture (Staff, 20 October 1942; Sharp, 1945).

William C. Sharp, Poston’s first Farm Supervisor, stated that “the land of this valley is as good an area for farming as that which exists anywhere in the southwestern United States” (Staff, 5 August 1942b). However, the evacuees first had to clear and level the land, build canals and laterals, and provide drainage to prevent the buildup of irrigation water and salts before planting. Farmlands were scattered the length of the entire center including areas in evacuee residential blocks and in firebreaks between the blocks of each of the camps (Figure 9.19). A total of 167 acres was farmed within the residential blocks of the camps (Sharp, 1945). An 80-acre piece of ground was also developed by the Poston II Agricultural Department near the Indian School about five miles north of Poston I (Staff, 3 November 1942). Native vegetation removal and land leveling began in summer 1942 and continued until 1945 (Sharp, 1945). Irrigation water first reached the Poston I area by early fall 1942 followed by Poston II and III in November 1942 after evacuees constructed more than 40 miles of irrigation canals, laterals, and sub-laterals (Staff, 4 November 1942; 9 May 1943; Sharp, 1945). Planting of cucumbers and napa first occurred in late summer and early fall 1942. Many plants, including vegetables, flowers, and trees, were started in each of the camp nursery *lathhouses*, then transplanted into the fields as seedlings (Sharp, 1945). Planting occurred in the spring and the fall, and irrigation occurred by flood or by furrow (Staff, 16 October 1942; 3 November 1942). By 1945, Poston agriculturalists had grown 42 different types of produce for human consumption, although 28 were ultimately identified as ideal for the conditions at the site (Table 9.1). The long growing season ensured not only variety but also fresh vegetables nearly year-round. The climate of the area also resulted in high annual productivity/acre on the center’s farmlands (Table 9.2). A total of 7,237,620 lbs of
Figure 9.19. Agricultural lands of the Poston Relocation Center. Adapted from Burton et al. (2002, p. 227).
Table 9.1. Crops and livestock raised at the Poston Relocation Center, 1942-1945. Data from Sharp (1945, Tables 1-12).

<table>
<thead>
<tr>
<th>Produce</th>
<th>Produce (cont)</th>
<th>Feed Crops</th>
<th>Livestock</th>
</tr>
</thead>
<tbody>
<tr>
<td>bean</td>
<td>okra</td>
<td>alfalfa</td>
<td>chickens</td>
</tr>
<tr>
<td>beans</td>
<td>onions (dry)</td>
<td>barley</td>
<td>fish</td>
</tr>
<tr>
<td>beans</td>
<td>onions (green)</td>
<td>milo-maize</td>
<td>hogs</td>
</tr>
<tr>
<td>beans</td>
<td>parsley</td>
<td>sesbania</td>
<td></td>
</tr>
<tr>
<td>beets</td>
<td>peanuts</td>
<td>wheat</td>
<td></td>
</tr>
<tr>
<td>broccoli</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cabbage</td>
<td>potatoes (irish)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cantaloupe</td>
<td>potatoes (sweet)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>carrots</td>
<td>pumpkins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>casaba</td>
<td>radish</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cauliflower</td>
<td>spinach</td>
<td>Swiss chard</td>
<td>guayule</td>
</tr>
<tr>
<td>celery</td>
<td>shiru-uri</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cucumbers</td>
<td>peas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>daikon</td>
<td>squash (banana)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>eggplants</td>
<td>squash (Italian)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gobo</td>
<td>squash (zucchini)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>grapes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>honeydew</td>
<td>togan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lettuce</td>
<td>tomatoes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mustard greens</td>
<td>turnips</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nappa</td>
<td>watermelons</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

produce was grown at Poston from 1942-1945 on 1,004 acres with the highest production occurring in 1944 (Table 9.2). The largest producers in terms of weight were cabbage, nappa, watermelon, daikon, carrots, and spinach (Sharp, 1945). Unlike the cooler relocation center sites,
Poston did not have a root cellar for produce storage apparently because fresh produce was available much of the year. However, excess produce was pickled for out-of-season use in the mess halls (Staff, 27 April 1943).

Farm innovations included seed farms, lath house farm nurseries, and the use of newspapers on seedlings for heat and dust protection (Staff, 26 June 1943). Seed farms were started because of a shortage of traditional Asian seeds. These included nappa, onion, daikon, shingeku (Staff, 2 August 1942; Kadani, 9 May 1943). Vegetables and flowers were started in shaded lathhouse nurseries in each of the camps. The Poston I nursery grew a variety of plants including flowers (e.g., Shasta daisy, calendula, larkspur, snapdragons, kochia, and petunia–Staff, 13 October 1942, p. 4).

Four different feed crops were grown at the center on a total of 858 acres (Table 9.1). Approximately 2,244,000 pounds of feed was raised in 1943 and 1944 with a market value of $19,312. Additionally, wheat was planted in 1945 but not harvested before the land was returned to the Office of Indian Affairs. Sesbania (i.e., a nitrogen-fixing plant) was also planted in 1943 and 1944 as a soil-building crop (Sharp, 1945). The WRA was very disappointed with the feed

Table 9.2. Produce and feed crops yields, Poston Relocation Center, 1942-1945. Data from Sharp (1945, Tables 1-13, 24).

<table>
<thead>
<tr>
<th>Produce</th>
<th>1942</th>
<th>1943</th>
<th>1944</th>
<th>1945</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Acres Harvested</td>
<td>35</td>
<td>330</td>
<td>424</td>
<td>215</td>
<td>1004</td>
</tr>
<tr>
<td>Total Production (lbs)</td>
<td>125,600</td>
<td>2,607,234</td>
<td>3,326,116</td>
<td>1,178,670</td>
<td>7,237,620</td>
</tr>
<tr>
<td>Consumed at Center (tons)</td>
<td>125,600</td>
<td>2,607,234</td>
<td>3,326,116</td>
<td>1,178,670</td>
<td>7,237,620</td>
</tr>
<tr>
<td>Shipped to Centers (tons)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total Market Value ($)</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>$368,721</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Feed Crops</th>
<th>1942</th>
<th>1943</th>
<th>1944</th>
<th>1945</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Acres Harvested</td>
<td>0</td>
<td>55</td>
<td>803</td>
<td>0</td>
<td>858</td>
</tr>
<tr>
<td>Total Production (lbs)</td>
<td>0</td>
<td>44,000</td>
<td>2,200,000</td>
<td>0</td>
<td>2,244,000</td>
</tr>
<tr>
<td>Fed at Center (tons)</td>
<td>0</td>
<td>44,000</td>
<td>2,200,000</td>
<td>0</td>
<td>2,244,000</td>
</tr>
<tr>
<td>Shipped to Centers (tons)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Market Value ($)</td>
<td>0</td>
<td>$1,144</td>
<td>$18,168</td>
<td>0</td>
<td>$19,312</td>
</tr>
</tbody>
</table>
crop yields attributing them to initially poorly leveled lands. Further, soils were highly variable in fertility. Native American horses and cattle damaged crops. Finally, evacuees did not seem interested in raising feed crops, likely because they did not see the ready benefits of growing them (Sharp, 1945).

In addition to feed crops, Guayule production was attempted at Poston as a way to create rubber for the war effort. Unfortunately, the 60,000 seedlings planted at Poston died before reaching maturity (Leighton, 1945).

Chickens and hogs were raised at Poston (Tables 8.1 and 8.3) (Staff, 14 August 1943). Chickens were raised for meat and eggs in 1943-1945. Peak meat production occurred in 1943 when 13,588 birds yielded over 41,200 pounds of meat. Peak egg production occurred in 1944 when Poston hens laid over 46,000 dozen eggs. Hogs were raised in 1942-1945 reaching a peak production of 309,386 pounds of pork from 1,527 butchered animals in 1944. In addition to the pork produced, hogs were important as waste management tools in consuming the center’s garbage (Sharp, 1945). A slaughterhouse and a butcher shop were built for the processing of the hogs (Staff, 23 March 1943a; Staff, 17 August 1944). A unique aspect of Poston’s livestock program was its fish farming project. The project focused on pond-raising of carp, sunperch, catfish, and bass for human consumption, and using the sediments of the ponds to fertilize the agricultural soils. However, the project ultimately failed because summer temperatures were too hot for the shallow ponds required for enhancing agricultural soils (Sharp, 1945).

Table 9.3. Livestock yields, Poston Relocation Center, 1942-1945. Data from Sharp (1945, Tables 14-24).

<table>
<thead>
<tr>
<th></th>
<th>1942</th>
<th>1943</th>
<th>1944</th>
<th>1945</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chickens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Butchered</td>
<td>0</td>
<td>13,588</td>
<td>9,969</td>
<td>17,039</td>
<td>40,596</td>
</tr>
<tr>
<td>Meat Total Weight (lbs)</td>
<td>0</td>
<td>41,217</td>
<td>31,692</td>
<td>60,213</td>
<td>133,122</td>
</tr>
<tr>
<td>Market Value ($)</td>
<td>0</td>
<td>$14,838</td>
<td>$11,409</td>
<td>$21,677</td>
<td>$47,924</td>
</tr>
<tr>
<td>Eggs (dozen)</td>
<td>0</td>
<td>14,374</td>
<td>46,154</td>
<td>66,483</td>
<td>127,011</td>
</tr>
<tr>
<td>Market Value ($)</td>
<td>0</td>
<td>$6,037</td>
<td>$19,385</td>
<td>$27,923</td>
<td>$53,345</td>
</tr>
<tr>
<td>Hogs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Butchered</td>
<td>1</td>
<td>610</td>
<td>1,527</td>
<td>1,155</td>
<td>3,293</td>
</tr>
<tr>
<td>Dressed Weight (lbs)</td>
<td>203</td>
<td>123,592</td>
<td>309,386</td>
<td>234,015</td>
<td>667,196</td>
</tr>
<tr>
<td>Market Value ($)</td>
<td>$35</td>
<td>$21,011</td>
<td>$52,596</td>
<td>$39,783</td>
<td>$113,425</td>
</tr>
</tbody>
</table>
The center’s agricultural programs were enhanced by the center’s newspapers that reported weekly on the doings of the school’s agriculture classes and Future Farmers of America clubs. Agricultural classes were also offered to adult evacuees (Staff, 20 February 1943). A fair was held at Poston in October 1942 (Staff, 20 October 1942) as a way to celebrate and honor the importance of agriculture there.

The center’s various agricultural programs ended by early August 1945 (Staff, 30 May 1945). Overall, the programs was marginally successful. For example, project administrators set a goal that 35% of the center’s vegetable needs would be supplied by its own agricultural program. In the first year of the project only 9% of these needs were supplied in-house. This deficit was made up with purchases from outside sources or transfers from other relocation centers (Staff, 13 June 1943). The agriculture program was hampered by a lack of readily farmable land, an initial paucity of irrigation water, and a lack of farm labor (Kadani, 18 April 1943). Predators including coyotes and weasels caused problems for poultry operations (Staff, 18 May 1944; 9 December 1944). Further, most of the program’s most capable supervisors relocated to other states by May 1943 (Staff, 23 May 1943).

Business and Industry. Businesses within the center were run by and for evacuees within the Community Cooperative Enterprises. Businesses within the “coop” included dry goods canteens (i.e., general stores), and beauty and barber shops, (Bailey, 1971; Burton et al., 2002). It is likely that, similar to other relocation centers, shoe and clothing stores, optical shops, laundries, dry cleaners, shoe repair shops, and electrical repair shops were also present at Poston. Pay for coop employees was the same as for other evacuee workers in the center—$12/month for common and semi-skilled labor, $16/month for skilled workers, and $19/month for professionals (Fujita-Rony, 2005).

Industry at Poston included camouflage net, tofu, charcoal, chow mein, noodle, and pickling factories. The camouflage net factories were operated in each of the three camps of Poston. Tofu production began in Poston I in April 1943 providing a traditional food for evacuees (Staff, 14 April 1943). A charcoal factory made charcoal from the numerous mesquite trees in the area (Staff, 8 January 1943). It is not clear how long the charcoal factory operated or where its product was used. Between 1,200-1,500 lbs of chow mein and Japanese noodles were produced daily (Girdner and Loftis, 1969). A pickling factory was constructed to preserve vegetables grown on the project farms and used in the mess halls (Staff, 27 April 1943).

Landscaping and Gardening. Evacuees planted trees and shrubs, gardens, and lawns for beauty, shade, and cooling in the harsh environment. Much of this was done on the initiative of the evacuees. Cacti and wild grasses were transplanted from the undeveloped areas on the margins of the camps to the spaces around the barracks. Castor beans were also planted along the barracks (Harris, 1999). The U.S. Department of Agriculture donated 18,000 Chinese elms to the center. Nurseries at the camps also provided trees and shrub seedlings to evacuees for planting in the residential blocks. Trees were planted in all of the public places within each of the three camps including the administration, hospital, military police, fire stations, churches, schools,
parks, and along roads (Sharp, 1945). Date palms were transplanted from the Office of Indian Affairs headquarters south of Parker to Poston I and III (Staff, 30 May 1944).

Carefully raked stone gardens indicative of traditional Japanese gardens could be found scattered throughout the camps (Harris, 1999). Further, evacuees built numerous concrete-lined garden ponds as centerpieces to barracks gardens that were often filled with carp (Figure 9.20) (Eaton, 1952; Harris, 1999). Evacuees also constructed ornate entry ways that, combined with plantings, radically altered the appearances of barracks (Eaton, 1952). Evacuees established public parks at various places within the camps. One example was Wade Head Park (named after the center director) in Poston I that included a bridge over the canal (Staff, 22 July 1942).

Education. Poston I, II, and III each had their own K-12 school systems complete with elementary and high schools. The schools in each camp were initially housed in recreation buildings within blocks throughout each of the centers. All told, approximately 5,300 students were in grades K-12 in Poston at any one time. The schools were initially plagued by poor facilities, including a lack of partitions between adjacent classrooms, and inadequate equipment and supplies (Harris, 1999). The furniture situation was initially so bad that students had to bring their own chairs! Three to four students would share a single textbook, no maps were available, and laboratory equipment was non-existent (Estes and Estes, 1999). Further, shortages of qualified teachers and the inability of the WRA to increase funding for the schools hampered the education program (Bailey, 1971). However, soon after the establishment of the camps, construction began on adobe school structures (Figure 9.21). Once complete, these buildings were well-designed and comfortable (Harris, 1999). By May 1944, Parker Valley High School many of the above issues had been resolved and the school received accreditation from the State Accrediting Committee of Arizona (Staff, 25 May 1944).

The adult education program was very popular with evacuees. Courses taught ranged from English aimed at Issei to calculus, fashion design, and shorthand designed to help evacuees find outside employment and relocate (Staff, 13 January 1943).

Recreation. As at other centers, recreation in the form of reading, arts and crafts, various performances, movies, dances, clubs, and sports, were a main diversion for all ages. Each of the camps had large libraries, the smallest of which in December 1942 had 3,100 books and a membership of about 50 percent of Poston III (Estes and Estes, 1999). New acquisitions were advertised weekly in the *Poston Chronicle*. Arts and crafts such as woodcarving, embroidery, crochet, knitting, sewing, and artificial flower arrangement were all practiced in the camps. Resident poetry was published in the *Poston Bungei* (Smith, 1995). The various pages of the *Official Daily Press Bulletin* and the *Poston Chronicle* show that fashion and talent shows as well as drama and musical groups graced the stages of the camps. Further, movies and dances were also common. Clubs included scouting, boys clubs, and girls clubs while the traditional board games *go* and *shogi* were played by the older men.

Sports were perhaps the most popular center activities when considering participation and spectatorship. Baseball, softball, track and field, volleyball, basketball, football, wrestling, ping pong, tennis, badminton, and boxing were all popular as were traditional Japanese sports of *judo* and *sumo* wrestling. A crowd of 1,500 “rabid fight fans” watched a boxing match while 5,500 fans attended a basketball championship game at Poston (Staff, 1 December 1942; Staff, 23 March 1943b). Gambling was a huge, albeit illegal, activity in the camps (Nishimoto, 1995). Water sports were also popular at Poston given the proximity of the camps to irrigation canals and the Colorado River. Youth swam in the numerous swimming pools of each of the camps. However, the swimming ponds and sloughs were occasionally closed because of the presence of coliform bacteria (e.g., Staff, 4 August 1942). Fishing in the canals, human-made swimming

ponds, and the Colorado River was so popular that a center-wide fishing contest was held (Figure 9.22) (Staff, 8 September 1943). Kite contests took advantage of the ample winds of the center (Staff, 26 August 1942).

Culture and Art. The WRA made sure that the culture and art of Poston, as at other relocation centers, was purposefully American. This was seen in language, dress, housing, meals, recreation, and business interactions. However, Japanese cultural influences were inevitable and visible throughout the center. The Issei often conversed in Japanese, and the *Poston Chronicle* had a Japanese language edition beginning in late October 1942. Buddhism has a strong
New Years was celebrated with the traditional mochi (i.e., mashed, sticky rice molded into balls) (Staff, 1 October 1943). A bathhouse was established in the center as were traditional tea ceremonies (Bailey, 1971). The Issei often sought out traditional hari and moxa medicinal practitioners rather than the modern medicine of the Poston hospital (Bailey, 1971). A form of theater, Kabuchi, was performed at an outdoor amphitheater in Poston (Bailey, 1971). Sumo wrestling was second in popularity only to softball at Poston with at least seven sumo rings present in the center (Staff, October 1942).

Faith and Spirituality. Various editions of the Official Daily Press Bulletin and the Poston Chronicle show that at least four different churches were present within the confines of each of the camps of the Poston Relocation Center. These included Buddhist, non-denominational Christian, Catholic, and Seventh Day Adventist churches. Services were initially given in English only but when conditions later relaxed, English and Japanese versions were held as well (Harris, 1999). At least two sects of Buddhists had their own temples at Poston I while Buddhist temples were also present in Poston II and III (Bailey, 1971). Buddhist celebrations occurring in
the camps included such traditional ceremonies as the Obon (i.e., festival of the dead) (Staff, 25 August 1942), Grand Bonenkai (i.e., end of year party) (Staff, 29 December 1942), and Hana Matsuri (i.e., Buddha’s birthday) (Staff, 6 April 1943). Christian services were noted as Issei or Nisei (i.e., second generation Japanese American born in the U.S.) (Staff, 10 October 1942). A vacation bible school organized by a Japanese American Baptist minister enrolled 800 children for a two month session and 500 children for a month session (Smith, 1995).

Health. Health care in Poston was limited (Ota, 1984). The 250-bed hospital in Poston I was poorly designed, ill-equipped, and chronically short of qualified personnel (Harris, 1999).

Heatstroke was one of the first large scale issues the Poston health care community had to deal with (Girdner and Loftis, 1969). Dehydration apparently killed two babies while they were still in the hospital (Cates, 1980). The ever-present dust caused desert silicosis, resulting in respiratory problems. Further, dysentery and its associated violent diarrhea occurred in epidemic proportions (Bailey, 1971). An infantile paralysis outbreak occurred at Poston III and flies were thought to be the carrier of the disease (Staff, 13 March 1943). Tuberculosis was also present in all three Poston camps. In an eight month period, 140 cases of tuberculosis were identified (Cates, 1980). Patients with tuberculosis were sent to Phoenix for isolation and treatment (Staff, 17 April 1943). Mosquitoes represented a health problem related to malaria and sleeping sickness. These insects were common in the camps because of the amount of standing water in ponds, beneath evaporative coolers, and in areas of irrigation and sewage runoff (Staff, 18 June 1943). As a result, mosquito control was carried out in and around the camps (Figure 9.23). Mental health was also an issue with several suicides reported in the center (Bailey, 1971).

Government. Each of the three camps at Poston had a representative-form of a community government composed of a Community Council elected by the eligible voters of each evacuee residential block. Under the original constitution drafted by the evacuees Civic Planning Board, all evacuees had the right to vote and hold office within Poston. However, the WRA subsequently issued an order stating that only U.S. citizens were eligible to vote thus leaving the natural community leaders, the Issei, without a formal voice in center governance (Staff, October 1942b; Bailey, 1971).

The Project Director and a Caucasian staff employed by the War Relocation Authority oversaw the camp, especially after 1 January 1944. Prior to that, the WRA jointly managed Poston with the Office of Indian Affairs (Fujita-Rony, 2005).

Community. “Community” is a concept that takes time and level headedness to accomplish. It also requires common core values; unfortunately, these common values were not always present at Poston. The relocation center had a mix of urban and rural evacuees. It also had Issei, Nisei, and Kibei (i.e., third generation Japanese Americans born in the U.S. and educated in Japan) whose values and beliefs differed from those of the Issei and Nisei. These differences acted
against the development of a community, especially in the center’s early months. For these and other reasons, Poston could be characterized as a more contentious center than most. Working conditions and pay resulted in strikes that slowed the making of adobe bricks and the farm programs (Nishimoto, 1995). Moreover, voluntary conscription and the military draft brought conflict to the community. Perhaps indicative of internal conflict at Poston was the fact that Poston had the third highest number of military volunteers of the ten relocation centers but also had the highest number of draftees who failed to report for duty (U.S. War Relocation Authority, 1946).
The best known of the Poston conflicts was the “Poston Strike”. Residents at Poston were initially upset by the lack of heating stoves as cold weather arrived in fall 1942. Further, promised clothing and clothing allowance money was late in arriving as were the paltry evacuee salaries. While the administration was cash short, they spent money to fence the center rather than taking care of evacuees’ needs (Burton et al., 2002). The Issei were frustrated that they were excluded from the Community Council (Spicer, 1969). The administration prevented committees of this council from fully investigating suspected wrongdoing by mess hall and hospital management (Spicer, 1969). The situation came to a head on 18 November when one of the Nisei councilmen, a suspected administration informer, was severely beaten in Poston I. The FBI came into the camp, and after a brief investigation, arrested two men and placed them in the center jail. The community became increasingly concerned that the men would be taken out of the camp to a jail elsewhere and tried in a different setting. A crowd gathered at the center jail and announced that they would not allow those arrested to be taken outside the center. Soon the crowd numbered in the hundreds. The temporary Community Council resigned after the acting project director rejected their request to release the suspects until a later trial. As support rose for those arrested, the atmosphere became increasingly tense. Issei community leaders called for a strike in which all but the most essential workers were to stay home from work until this and other underlying issues were resolved. For several days and nights demonstrations, speeches, and open defiance of the administration occurred in the center until leaders from both sides could hammer out a resolution. That resolution called for the Issei to be the true voices of the evacuees, who would work for law and order, smooth operation of the center, and true community organization (Spicer, 1969). As a result, community improved markedly after the strike.

Interaction with Surrounding Areas

The Outside World. As at Gila River, much suggests that nearby communities and Arizona as a whole wanted little to do with Poston evacuees. Evacuees did have the freedom to walk outside the boundaries of the relocation center to gather stones for gardens or wood for carving, or to swim or fish in the Colorado River (Bowers, 1997). However, little interaction apparently occurred between the approximately 18,000 Japanese Americans and the 1,200 Native Americans on the Colorado River Indian Reservation (Figure 9.24). The Poston Relocation Center camps were primarily self-contained, and enclosed within a barbed wire fence. The Colorado River Indian Reservation members had their own school and likely attended to their business in Parker (Okimoto, 2001). Those interactions that did occur appear to have been centered on sporting events and on trade or rent of agricultural items including horses (Okimoto, 2001; Fujita-Rony, 2005). The Poston Japanese Americans also taught the Native Americans how to better farm the soils of the Colorado River floodplain (Staff, 1992). Further interactions occurred when 17 Hopi colonist families began to move into Poston II as the remaining 1,024 Japanese evacuees there were preparing to move out (Okimoto, 2001). Further, Navajos from the Flagstaff area were employed at the center beginning in mid-September 1945 doing a variety of jobs (Staff, 26 September 1945). All indications are that these interactions went well, perhaps because the Japanese Americans and the Native Americans had much in common in terms of
treatment by the U.S. Government (Okimoto, 2001). Center officials initially promoted the idea that Japanese American families could develop land on their own outside the center boundaries (Staff, 20 October 1942; Cates, 1980). However, this idea was later rejected and local residents were assured that no evacuees would stay on reservation lands they had developed (Girdner and Loftis, 1969).

Little has been written about the interaction of Poston’s Japanese Americans with Parker-area EuroAmerican residents. Poston’s high schools competed against Parker High School in athletic events with no apparent problems (e.g., Staff, 30 December 1942). While it was suggested that Poston try to win goodwill with Parker’s residents by offering to perform music in Parker, limited evidence exists that this happened (Staff, 10 January 1943; 18 April 1943). On at least one occasion, Parker and Poston Boy Scouts teamed up to recycle waste paper, then socialized with each other for the rest of the day (Staff, 6 June 1944). Parker Valley cotton farmers benefitted from the Poston labor force during labor-short World War II (Staff, 11 November

Incoming or outgoing Poston evacuees used the railhead at Parker, and evacuees provided the labor force at the center warehouse in Parker thus some interaction between evacuees and local residents must have taken place (Staff, 22 September 1942). Parker businesses no doubt benefitted and depended on the business of the center. For example, the Parker Lumber and Supply Company advertised in the center’s *Official Daily Press Bulletin* that it had evaporative coolers for sale (Staff, 15 September 1942). Merchants eventually had to tighten restrictions on evacuee purchases because they were leaving little for the “regular” patrons (Girdner and Loftis, 1969). However, it was not until February 1944 that Parker businesses formally invited Poston residents to shop in Parker (Staff, 24 February 1945). And once there, racism was plainly visible in Parker.

A sign on the entrance door of the Grandview Hotel read:

> Japs Keep Out
> You Rats

Estes and Estes (1999, p. 28)

Others have reported that Parker business owners refused to serve evacuees or were only willing to serve them outside their businesses (Staff, 1992; Harris, 1999, p. 52). A young Nisei U.S. Army soldier home on leave was struck in the head by a baseball-bat wielding Parker businessman for no apparent reason other than being of Japanese descent. Apparently, other EuroAmerican Parker residents treated the local Indian population similarly (Harris, 1999).

Much suggests that Arizona officials wanted little to do with the Poston Japanese Americans. In March 1942, Arizona Governor Sidney Osborn protested that Arizona should not be used as a “dumping ground” for “enemy aliens.” Arizona legislators, responding to constituent’s fears of economic competition and their desires to discourage evacuees from settling in Arizona, enacted a law that prohibited business transactions with any persons “whose movements were restricted by law.” This law was subsequently struck down by the Maricopa County Superior Court and this court’s decision was subsequently upheld by the Arizona State Supreme Court (Caruso, 1973). Despite the change in boundaries that placed all of Arizona’s Maricopa County out of the military exclusion zone, hence theoretically open for Japanese resettlement in March 1943, resettlement was halted there because of anti-Japanese sentiment in the Salt River Valley (Staff, 5 March 1943; 27 May 1943). Arizona Senator McFarland publicly stated his desire that no Japanese Americans relocate to Arizona (Staff, 6 July 1943). Further, Arizona did not set up an office to assist evacuees in locating jobs in Arizona (Madden, 1969). Given California’s traditional animosity toward Japanese Americans, it is likely that interactions, if they occurred, were similarly negative.

In addition to attending to business in Parker, evacuees could leave the center on short-term, seasonal, and indefinite leaves. Short-term leaves ranged from several days to a few weeks, and were typically for personal business or medical issues. Seasonal leaves were granted to evacuees
for seasonal agricultural employment. The purpose of indefinite leaves was to permanently depart the centers for relocation to the “outside world”, join the armed forces, be interned in a Department of Justice Internment Camp, be committed to an institution, or be repatriated to Japan (U.S. War Relocation Authority, 1946).

Young men and women from Poston were allowed to leave Poston on seasonal leaves beginning in fall 1942 to help harvest various crops including sugar beets throughout Colorado, Idaho, Montana, Nebraska, and Wyoming. They encountered blatant racism on at least several occasions but were instrumental in helping the farmers raise and harvest their crops (Estes and Estes, 1999).

Despite being uprooted from their homes, and incarcerated in Assembly Centers and subsequently in Poston, relocation from the center was encouraged early on. Beginning in March 1943, Poston evacuees were required to register for relocation. Registration, coupled with a streamlined leave application process, helped speed up relocation (Estes and Estes, 1996). The numbers of relocations increased beginning in April 1943, with only one month in the next 31 months having less than 100 evacuees relocating (Figure 9.25). In 1943, 2,675 had departed, 2,789 more departed in 1944, and 11,782 departed in 1945 (U.S. War Relocation Authority, 1946). However, relocation from Poston could best be referred to as a trickle until at least mid-1945. Reasons that the evacuees gave as to why they did not relocate included too little cash given by the center to help with relocation ($100), belief that they would not be able to find jobs, and fear that they would face anti-Japanese hostility in their chosen place of relocation. At least at Poston they were safe, fed three meals a day, had a place to sleep, and had a supportive community around them. Even after the West Coast Exclusion Order was lifted in December 1944, evacuees were reluctant to return to the West Coast. Only after announcing that Poston would officially close by the end of November 1945, and that the schools would close at the end of the 1944-45 school year, did the pace of relocation increase. This pace was further enhanced by administration-sponsored scouting parties that checked out relocation possibilities in various West Coast locales (Estes and Estes, 1996). As at Gila River, relocations peaked in the warm season months in 1943 (May-August) and 1944 (March-August) (Figure 9.25) suggesting that the oppressive heat of the center may have played a role in pushing evacuees out of the centers. Relocation was often enhanced by various individuals or groups. In one instance, the parents of a Caucasian teacher helped students relocate to points east (Harris, 1999). Various editions of the *Poston Chronicle* show that Poston evacuees relocated to at least 35 states in the U.S. with Chicago, Cleveland, Denver, Des Moines, Detroit, Kansas City, Milwaukee, Minneapolis-St. Paul, New York, Philadelphia, Salt Lake City, and St. Louis as the preferred cities (Figure 9.26).

With over 610 serving in the U.S. armed forces during World War II, Poston had the distinction of providing the most soldiers to the war effort of any of the relocation centers. Only 116 of these volunteered while 495 were drafted (U.S. War Relocation Authority, 1946). Many of the soldiers served in the much-decorated, all-Nisei 442nd Regimental Combat Team made famous by its successes in the European Theater of Operations (Bailey, 1971). Casualties totaled 17%
with 16 killed, 86 wounded, and 2 missing in action. Interestingly, Poston also had the highest number of Selective Service violations. One-hundred and twelve Poston evacuees failed to report for their physical exams or induction after they were drafted. Of these, 106 were convicted (U.S. War Relocation Authority, 1946).

Other Relocation Centers. Poston interacted with other relocation centers primarily in the transfer of evacuees, by trading agricultural crops, and through athletic competitions. Poston residents visited family or close friends at other centers by obtaining visitor permits (Staff, 7 October 1942). The pages of the *Poston Chronicle* often list these visitations. A group of Poston men went to Tule Lake to help with the harvest of the potato crop after Tule Lake evacuees went on strike (Staff, 31 October 1943). Poston transferred 1,355 “disloyal” evacuees to the Tule Lake Segregation Center in October 1943 and another 74 in March 1944 because they or members of their families answered “no” to questions 27 and 28 of the “loyalty questionnaire” (Appendix C). Unlike most of the other centers, Poston did not receive any “loyal” Tuleans in return. Thirty Poston residents who answered “no” to the “loyalty questionnaire” were repatriated to Japan in September 1943 (U.S. War Relocation Authority, 1946).
Figure 9.26. Geography of Poston indefinite leaves (i.e., relocations), June 1942-November 1945. Data from relocation sections of various issues of Poston Chronicle.
While evidence is lacking for Poston shipping farm produce to other relocation centers, the center did receive produce from Tule Lake on at least several occasions (Staff, 10 August 1943; 21 August 1943).

Poston baseball teams traveled to relatively nearby Gila River. Additionally, Amache baseball teams came to Poston for games (Staff, 11 July 1944; 7 September 1944).

Closing Poston and Another Relocation

Public Proclamation #21 on 17 December 1944 ended the West Coast Exclusion Order that had been in effect since 1942. All relocation centers were to be closed by the end of 1945 (Staff, 19 December 1944).

On 23 June 1945, the center administration announced that Poston II and III would close on 1 October 1945. Poston I would remain open until 1 December (Estes and Estes, 1996). As of 1 January 1945, 11,710 evacuees lived in Poston’s three camps (Figure 9.27). By 1 June, Poston evacuees still nearly totaled 10,000. The pace of relocations increased after that. Poston II and III were closed on 29 September 1945 while Poston I officially closed on 28 November 1945 (U.S. War Relocation Authority, 1946; Japanese American National Museum, n.d.).

Impacts of Poston on Today’s Southwestern Arizona Landscape

Evacuee Dispersion. The 1950 census only showed four persons of Japanese descent in Yuma County as opposed to 13 in 1940 suggesting that few remained in the immediate area after its closure. The Japanese population of Yuma County and the six adjacent Arizona and California counties dropped by nearly 50% between 1940 and 1950. However, the number of Japanese Americans in adjacent Maricopa County in 1950 rose to 730 from its 1940 population of 534 (Figure 9.10) (U.S. Bureau of the Census, 1943; 1952a; 1952b). Further, 818 Japanese American evacuees relocated to Arizona directly from the various relocation centers (U.S. War Relocation Authority, 1946). Because of the location of Poston and Gila River in Arizona, it seems likely that most of these 818 came from these two centers. Thus, this suggests that a significant number of Japanese Americans did stay in southern Arizona following the closure of the Poston Relocation Center.

Maricopa County, likely because of its strong Japanese roots, again served as the center of Japanese American population in the state in the years immediately following World War II. It is interesting, however, that Arizona, with the highest relocation center population (31,162 at its peak) of any of the seven states that had relocation centers, had so few evacuees in the state after World War II (U.S. War Relocation Authority, 1946). The 1950 census showed that Arizona’s overall Japanese American population had declined by nearly 40% from its 1940 peak—i.e., 1,264 in 1940 to 780 in 1950 (U.S. Bureau of the Census, 1943; 1952a).
Land Dispersion. The WRA first returned 2,000 acres to the Office of Indian Affairs in May 1945. This was to be land for the Colonization Program—i.e., a program in which other southwestern Native Americans would move to the Colorado River Indian Reservation and colonize the area developed and occupied by the Japanese Americans. These other tribal members were promised farmland, ample irrigation water, and housing. Only Poston II was set aside for the colonization program. However, the Office of Interior (now the Department of the Interior) nearly sold the land and associated buildings on which Poston occupied before a misunderstanding was resolved. The Colorado River Indian Reservation was ultimately compensated for the use of the land as a war relocation center by the Office of Interior (Okimoto, 2001).

Infrastructure Dispersion. The original agreement between the Office of Indian Affairs and the WRA stipulated that all improvements made for the center were to stay with the Colorado River Indian Tribe following the removal of the Japanese Americans (Fujita-Rony, 2005). Barracks were initially given to Hopi colonists when they entered Poston II in September 1945. After October 1946, barracks were sold to anyone interested for $50-75 apiece (Okimoto, 2001; Fujita-Rony, 2005). Other center buildings were likely sold in the same fashion. Adobe bricks were taken from the schools and various other adobe structures to build houses in Parker (Harris, 1999). Demolition of many of the buildings was considered by the Office of Indian Affairs but it is not clear how many were actually destroyed (Fujita-Rony, 2005).
Remains of Poston. Burton et al. (2002) describe in detail the nature of Poston as of about 2000 where limited evidence remains of the three camps and the surrounding agricultural areas. Further, I visited the former relocation center in December 2002. Of the three camps, Poston I is the most intact with some buildings, roads, palm trees (Figure 9.28), concrete slabs of various buildings, and the sewage treatment plant remaining. Of particular interest are the remains of the adobe Poston I elementary school (Figure 9.29), and the machine shop. Following the departure of the Japanese Americans, the Colorado River Indian Tribes and the Parker School District used the Poston I elementary school, and the community used the Poston I auditorium. The Job Corps also used the facility as a training facility in the 1960s. As of 2001, one Poston I classroom was used as an alcohol recovery center (Okimoto, 2001).

Little more than the sewage treatment plants and the occasional concrete slabs remain at Poston II and III. Colorado River Indian Tribes and the Parker School District used the Poston II school from 1949 until 1980 when it was demolished to make room for a new school (Okimoto, 2001).

Farm fields and irrigation ditches also remain in the outlying areas (Burton et al., 2002). The remainder of the area has been cleared of debris, leveled, and farmed (Figure 9.30). At Parker, concrete slabs associated with the relocation center warehouses remain near the railroad (Burton et al., 2002).

Figure 9.28. Remains of palm-lined street in northeastern portion of Poston I, Poston Relocation Center. Author photograph, December 2002.
More than 50 former relocation center buildings have been identified throughout the Parker Valley (Estes and Estes, 1999; Okimoto, 2001; Burton et al., 2002). These buildings have seen duty as houses, schools, machine sheds, and chickenhouses. Many of the center’s barracks may still be seen at farmsteads in the area (Figure 9.31).

The Poston Memorial Monument and Kiosk along Mohave Road in Poston I (Figure 9.32) serves as a memorial for the Poston Relocation Center. Both contain very informative interpretation signs for the former center as well as information on the Colorado River Indian Reservation. As of 2002, Colorado River Indian Tribes also intended to restore the Poston I elementary school and construct a heritage park consisting of barracks, the Kabuki theater, and a military police post (Burton et al., 2002). The Colorado River Indian Tribes’ Library and Museum contains an excellent selection of books related to Japanese American relocation. The Parker Valley Historical Museum in Parker also contains a display on the Colorado River Indian Tribe and the World War II era. The Poston Restoration Project is working to preserve the physical remains as well as the stories and memories of the site.

The Colorado River Indian Reservation Today. In 1944, the tribal council agreed to open the southern one-half of the reservation to settlement by returning service men and women of any tribal affiliation (Fontana, 1963). Colorado River Tribal Council Ordinance Number 5 (dated 26 March 1945) divided the Colorado River Indian Reservation into a Northern Reserve and a
Southern Reserve. The Northern Reserve consisted of 25,000 irrigable acres dedicated to currently enrolled members of the Colorado River Indian Tribes. The Southern Reserve involved 75,000 irrigable acres that were set aside for “colonist” Indians from other parts of the Colorado River drainage (Fontana, 1963). Following the departure of the Japanese Americans from the Poston Relocation Center, Hopi and Navaho, as well as members of the Walapai, Supai, Cocopah, Quechan, Chemahuevi, and Mohave tribes were allowed to settle on the Colorado River Indian Reservation (Okimoto, 2001). Nearly 150 Hopi and Navaho families had done so by 1951 (Fontana, 1963). Tribal members voted to rescind Ordinance Number 5 in 1952 because of concerns that the newcomers would soon outnumber the Mohaves (Fontana, 1963). The Department of Interior ignored this action. By 1954, the Northern Reserve consisted of 138 Mohave-Chemehuevi families and Southern Reserve included 112 Navaho families, 31 Hopi families, three Havasupai families, three Fort Mohave families, and four Chemehuevi families (Fujita-Rony, 2005). However, further colonization by outside tribe members was discontinued after the Mohave and Chemehuevis filed suit with the Indian Claims Commission in 1957 (Comeaux, 1981). Some of the outside tribal members who initially settled on the Colorado River Indian Reservation returned to their original reservations; however, a significant number of Hopi and Navaho remained (Okimoto, 2001). It was not until 1964 that Congress repealed Ordinance No. 5 and gave the Colorado River Indian Tribes (CRIT) the right of “beneficial ownership” of the reservation (Flores, 1994). Today, the member tribes of the CRIT reservation

Figure 9.30. Farmland of the Colorado River floodplain south of Parker on the former Poston Relocation Center. Note the very level nature of the floodplain and the lush nature of the alfalfa considering the time of year. Author photograph, December 2002.
Figure 9.31. Remains of former Poston double-roofed barracks, north of Poston I along Mohave Road, Poston Relocation Center. Author photograph, December 2002.

Figure 9.32. Poston Memorial Monument, Poston Relocation Center. Author photograph, December 2002.
are Mojave, Chemehuevi, Hopi, and Navaho. As of 1999, the population of the reservation was 3,645 (Arizona Department of Commerce, n.d.).

Farming has long been the economic mainstay of the area. Following the departure of the Japanese Americans, CRIT members embarked on a path to develop more farmland. Approximately 38,000 acres of farmland had been cleared of brush for farming by 1955 but efforts to farm some of these lands were thwarted by waterlogging and alkalinity/salinity problems. With the resolution of many of these problems, 34,000 acres were farmed by 1963, with much of this land in cotton. Also in 1963, the U.S. Supreme Court decreed that the Colorado River Indian Reservation was entitled to sufficient Colorado River water to irrigate 107,588 acres of farmland (City of Parker, n.d.). A tribal farm was initiated in 1973 that had grown to 11,000 acres by 1994 (Flores, 1994). As of 1999, 84,500 acres were currently being farmed on the Colorado River Indian Reservation (Arizona Department of Commerce, n.d.). Only a few Mohave, Chemehuevi, and Hopi farmers continue to farm the land. Most of the rest is farmed through long-term leases with non-Indian farmers. In addition to cotton, alfalfa, wheat, feed grains, lettuce, and melons are grown on the Colorado River Indian Reservation lands (Okimoto, 2001). It is ironic that the early successes of the Japanese American farmers in the Parker Valley were the catalysts for the dramatic increase in farmed land on the reservation that ultimately left so little remaining of the Poston Relocation Center.

The Colorado River Indian Reservation consists of 268,691 acres, 225,995 of which are located in Arizona (Arizona Department of Commerce, n.d.). The Colorado River Indian Tribes owns the title to the land in trust through the U.S. Government (Okimoto, 2001). Largely because of this land base, the tribe’s economic fortunes are on the rise. In addition to agriculture, the tribe is involved in tourism, recreation, gaming, and light industry (Arizona Department of Commerce, n.d.). As of 1999, the CRIT population was 3,931 and unemployment had declined from 8.1% in 1990 to 5.0% (Arizona Department of Commerce, n.d.). CRIT employs over 300 persons thus providing the largest payroll in La Paz County (Flores, 1994). The area that was viewed as bleak and desolate by the Japanese Americans upon their arrival in 1942 has been transformed into a very desirable place for agriculture as well as recreation, tourism, light industry, and “snowbirds” escaping the long winters of the north. Parker, somewhat akin to Quartzite approximately 35 miles south, now depends on retirees rather than Japanese American evacuees for much of its economic sustenance (Parsons, 1992).

Acknowledgments

Jim Krahembuel, Frank Martinez, and Shelly Ward of the Parker Valley Conservation District helped me better understand the Parker Valley and its geography. The staffs at the CRIT Library, the Parker Public Library, and the Parker Valley Historical Society Museum were also helpful in locating Poston resources. Central Washington University students Eli Asher and Paul Blanton assisted with library research, and Carla Jellum and Jared Treser created most of the figures. Jay Cravath, Robert Kuhlken, Nancy Lillquist, Janet Mueller, and Ruth Okimoto reviewed an earlier draft of this chapter. Thank you all.
References

Staff, 1942: Heaters are Here, But... *Official Daily Press Bulletin*, 17 December, pp. 6.

Staff, 1943: Charcoal Production For Commercial Use Begins at Unit I. *Poston Chronicle*, 8 January, pp. 2.

Staff, 1943: Students to Entertain at Parker. *Poston Chronicle*, 10 January, pp. 3.

Staff, 1943: Last Call for Enrollment in Night Classes. *Poston Chronicle*, 13 January, pp. 5.

Staff, 1943: Ag. Course may be Started. *Poston Chronicle*, 20 February, pp. 3.

Staff, 1943: Buddhists Present Colorful Program for Hana Matsuri. Poston Chronicle,, 6 April, pp. 1.

Staff, 1943: Production of Tofu Starts in Unit I. *Poston Chronicle*, 14 April, pp. 1.

Staff, 1943: Steps Taken to Hospitalize Tuberculosis Patients in Phoenix. *Poston Chronicle*, 17 April, pp. 5.

Staff, 1943: Pickle Factory to be Built by Industry Dept. *Poston Chronicle*, 27 April, pp. 1.

U.S. Department of Agriculture, 1954: Diagnosis and Improvement of Saline and Alkaline Soils. *Agriculture Handbook No. 60*.

459