CHAPTER 5

MINIDOKA

Introduction

The Minidoka Relocation Center was located at about 42°41' N latitude and 114°15' W longitude and at approximately 3,950 feet elevation in Jerome County of south central Idaho (Figure 5.1). The site lies within an agricultural area known as the “Magic Valley” on the central Snake River Plain about 19 miles southeast of Shoshone, 14 miles east of Jerome, and 13 miles northeast of Twin Falls. Interstate 84, the primary east-west route in southern Idaho, is about seven miles south of the former center. Boise is approximately 130 miles west and Pocatello is about 120 miles east. The center is often referred to as “Hunt” or the “Minidoka Relocation Center at Hunt” because Minidoka could be easily confused with the town of Minidoka 50 miles east of Hunt. The post office designation for the center was Hunt (Burton et al., 2002), named after Wilson Price Hunt, an explorer with the Astorians who passed through the area in 1811. Minidoka may mean “well spring” or “broad expanse” (Boone, 1988).

The following pages address: 1) the physical and human setting in which Minidoka was located; 2) why south central Idaho was selected for a relocation center; 3) the structural layout of Minidoka; 4) the origins of Minidoka’s evacuees; 5) how Minidoka’s evacuees interacted with the physical and human environments of south central Idaho; 6) relocation patterns of Minidoka’s evacuees; 7) the fate of Minidoka after closing; and 8) the impact of Minidoka on south central Idaho some 60 years after closing.

Physical Setting

Physiography, Geology and Landforms. The Minidoka Relocation Center occupied the Snake River Plain section of the Columbia Plateaus physiographic province (Fenneman, 1931) (Figure 5.2). The Snake River Plain is a low relief volcanic surface arcing more than 800 miles across southern Idaho (Greeley, 1987). The Snake River follows this arc across much of the state. The South Hills lie approximately 20 miles south of the site while the Pioneer and Smoky Mountains of the Sawtooth Range of the Rockies are located about 50 miles north.

The geology of the area is dominated by the Cenozoic (i.e., approximately past 65 million years) Sand Springs Basalt and Cenozoic Snake River Basalt (Rember and Bennett, 1979) (Figure 5.3). The eruptive style that released the basalts is termed “Plains volcanism” and is akin to what occurred on northern California’s Modoc Plateau (home of the Tule Lake Relocation Center) as well as in Iceland and on India’s Deccan Plateau. This eruptive type is a hybrid of flood eruptions that create plateaus and Hawaiian-type eruptions that result in cones. On the Snake River Plain, multiple, thin flows originate from numerous fissures or rifts to form broad accumulations of basalt lava flows as well as isolated cinder cones (Greeley, 1987).
Figure 5.1. Jerome County, Idaho and adjacent counties. Adapted from Official Idaho Highway Map (2000).
Figure 5.2. Minidoka and the Snake River Plain within the Columbia Plateaus physiographic province. Map adapted from Fenneman (1931, Plate 1).
Figure 5.3. Geology of Minidoka Relocation Center and vicinity. Adapted from Rember and Bennett (1979).
Figure 5.4. Topographic map of Minidoka Relocation Center and vicinity. Adapted from U.S. Geological Survey Twin Falls, Idaho 1:100,000-scale topographic map.
Minidoka Relocation Center occupied terrain that is best described as “irregular” with numerous small hills and closed depressions in no apparent pattern (Figures 5.3 and 5.4). The rises are often volcanic pressure ridges, shield volcanoes or linear vents while the swales may be collapse craters or collapsed lava tubes (Greeley, 1987). A cinder cone–Cinder Butte–is evident near the eastern border of the center, and a non-descript volcanic vent is located about three miles east of the former center main entrance within the center’s former boundaries (Rember and Bennett, 1979). A northeast-trending, linear volcanic vent is present about four miles west of the center (Rember and Bennett, 1979). Post-volcanic weathering, streams, and winds have partially worn down the volcanic hills and filled the basins.

The Bonneville Flood also had dramatic impacts on the area’s landforms. This flood originated when late Pleistocene Lake Bonneville overtopped a threshold at Zenda in southern Idaho (Figure 5.5) and sent approximately 33 million ft3 of water raging down the Snake River drainage for an eight week period about 15,000 years before present (Jarrett and Malde, 1987; Oviatt et al., 1992). In the vicinity of the Minidoka Relocation Center, this massive flood created the Rupert Channel, a floodway that paralleled the Snake River Canyon from Rupert westward before again joining the Snake near present-day Twin Falls. The floodway is characterized by scablands (including dry falls, potholes, chaotic channels, and a generally scoured landscape) as well as depositional bars that include boulders as large as 10 feet in diameter. The southern margin of the former center’s lands in the vicinity of Eden lie within the Rupert Channel thus show evidence of high energy scouring as well as flood deposition (Malde, 1968). As a result of the various processes that have shaped the landscape, the total relief at the former center is just 295 feet with elevations ranging from 4,230 feet on the eastern margins to 3,935 feet in the southwest corner.

Weather and Climate. Summers in the area are generally hot and dry while winters are cold and relatively moist (Figure 5.6). The climate is classified under the Koppen system as Dry Midlatitude Steppe (BSk) (Griffiths and Driscoll, 1982).

The mid-latitude setting results in a systematic change in sun angles and temperatures throughout the year. The mid-continental location enhances temperature extremes because of the relatively low specific heat (i.e., amount of heat required to raise the temperature of a particular mass) of land as compared to water (Western Regional Climate Center, n.d.a). Annual temperatures at nearby Shoshone averaged 48°F during the 1931-1960 period (Western Regional Climate Center, n.d.b). January’s mean monthly temperature was 23 °F while the average July temperature was 73°F (Western Regional Climate Center, n.d.b) (Figure 5.6). This period of record includes two of the coldest winters in recent history–1937-38 and 1948-49 (Western Regional Climate Center, n.d.a). The mountains to the north prevent most bitterly cold, Arctic air masses from reaching the Snake River Plain. Despite the distance from the Pacific Ocean and the effects of the intervening mountains, the Pacific still has a moderating influence on temperatures in the area—i.e., summers are cooler and winters are warmer than more continental settings at similar latitudes (Clawson, 1989). The growing season (i.e., last 32°F killing freeze of spring to the first 32°F killing freeze of fall) at Shoshone five out of ten years averages 123 days with the last
Figure 5.5. Pleistocene lakes and floods of the Basin and Range, and adjacent areas. Adapted from Williams and Bedinger (1984).
Figure 5.6. Climograph showing 1931-1960 mean temperature and precipitation for Shoshone 1 WNW, Idaho. Data from Western Regional Climate Center (n.d.b).
killing freeze of spring typically occurring around 23 May and the first freeze of fall near 22 September (Western Regional Climate Center, n.d.b).

Annual precipitation averaged 9.8 inches/year in Shoshone over the 1931-1960 period (Figure 5.6). Over 67% of the precipitation fell between September and April (Western Regional Climate Center, n.d.a). The general aridity of the site is the result of the location inland of the Cascade Range and Blue Mountains to the west, and the fact that moist, Pacific air masses must traverse the Cascade Range and Blue Mountains before arriving on the eastern Snake River Plain. By the time these air masses arrive in the vicinity of Twin Falls they have taken on much of the character of the land beneath them—i.e., hot and dry in the summer, and cold and relatively moist in the winter. The generally dry summers and moist winters result from the alternation of the Hawaiian High pressure system and Aleutian Low pressure system off the West Coast of North America (Western Regional Climate Center, n.d.a). Because of cool to cold conditions, much of the winter precipitation falls as snow. Snowfall averaged approximately 37 inches/year and ranged annually from 0 to nearly 84 inches over the 1931-1960 period (Western Regional Climate Center, n.d.b). Warm season precipitation is typically associated with moist air moving northward from the Pacific Ocean, from moisture evaporated from land, and from Gulf of Mexico moisture that passes over the Rockies (Paulson et al. 1991). This precipitation is typically associated with thunderstorms which occur approximately 15 days of each year, typically between May and August (Clawson et al. 1989; Ames, 2003). As in other semi-arid settings, drought is a common occurrence on the Snake River Plain. Droughts occurred from 1929-1941, and again from 1959-1961 (Paulson et al. 1991). Annual evaporation was approximately 38 inches/year over the 1946-1955 period (Meyers, 1962).

Winds are a common feature of the eastern Snake River Plain. The mountains north and south of the plain channel winds, giving them a generally southwestern component in this area. Average winds speeds are highest in March through June while the lowest wind speeds occur from October through January (Clawson et al. 1989). High winds are typically associated with the passage of fronts, mid-latitude cyclones and thunderstorms (Western Regional Climate Center, n.d.a).

Soils. The soils of the former Minidoka Relocation Center are a function of the five soil forming factors—i.e., parent material, topography, climate, biota, and time. Parent materials are alluvium or loess, and topography generally consists of a gently undulating, irregular landscape. The Bonneville Flood eroded existing soils along the floodway thus “resetting the soil clock” in those areas. Soils of the area are differentiated primarily by parent materials, topography, and time (Figure 5.7) (Ames, 2003).

All soils of the former center lands are mapped as either aridisols (Bahem, Banbury, Barrymore, McCain, Owinza, Paulville, Power, Shano, Sluka, Suepert, Starbuck, Taunton and Tulch) or rock outcrop (Figure 5.7) (Ames, 2003). The aridisols are indicative of the semi-arid climate regime of the area. The dominant soil texture is silt loam and soil depths range from approximately 12 inches in the Banbury-Rock Outcrop Complex to 72 inches in the Power-McCain Complex.
Figure 5.7. Soils of the Minidoka Relocation Center and vicinity. Data from Ames (2003).
Parent material for the aridisols is either stream-deposited *alluvium*, wind-blown *loess* or weathering-derived *residuum* (Ames, 2003). Most of the soils are well-drained, and range from being mildly to strongly alkaline. The high pH, combined with very little soil organic matter, reflects the semi-arid climate of the area (Ames, 2003). Rock outcrop is weathered basalt associated with the Snake River Plain volcanics. The soil associations marked as #6 on Figure 5.7 reflect the Rupert Channel of the Bonneville Floods. All irrigable soils of the former relocation center lands have moderate to severe limitations because of erosion or climate limitations under the Land Capability Classification (LCC) system (Ames, 2003; U.S. Natural Resources Conservation Service, n.d.).

Water. Minidoka lies about nine miles north of the Snake River. The Snake originates on the Yellowstone Plateau of northwest Wyoming and ultimately reaches the Pacific Ocean as a tributary to the Columbia River. The annual discharge of the Snake River over time reflects the variable climate patterns discussed above—i.e., periods of drought interspersed with wetter times—combined with withdrawals for irrigation and domestic purposes (see below) (Figure 5.8). Despite the proximity of Minidoka to the Snake River and its inclusion in the Snake River Watershed, little natural surface water flow is evident in the area because of the semi-arid climate, the irregular, youthful topography, and relatively porous substrate. Those unnamed intermittent and ephemeral streams that do exist flow short distances and in haphazard directions before disappearing into the basalts. Snake River water at King Hill, about 70 miles downstream of Milner Dam, had a *specific conductance* of 500 micromhos and a *sodium-adsorption ratio* of 4. These values represent medium salinity and a low sodium hazards, respectively, for irrigation (U.S. Department of Agriculture, 1954; U.S. Geological Survey, 1955).

The Snake River Plain Aquifer occupies the younger basalts of south-central Idaho. The permeability of this aquifer, thus the ability to recharge from precipitation, stream runoff, or irrigation runoff depends on the characteristics of the basalts. The most permeable of these units are those that consist of rapidly cooled, thin basalt flows that have ample *vesicles* (i.e., gas bubble holes) and *joints* (i.e., fractures) (U.S. Geological Survey, 1994). Evidence of this aquifer is present as springs in the walls of the Snake River Canyon between Milner Dam (about 20 miles upstream of Twin Falls) and King Hill (about 45 miles downstream of Twin Falls). Irrigated agriculture from Snake River waters diverted into the North Side Canal initially enhanced spring flow throughout this area (Stearns et al., 1938). However, subsequent groundwater pumping has reduced spring flows (Ron James, written communication, 15 March 2007). Groundwater of the Snake River Plain tends to be “hard”—i.e., containing a considerable amount of dissolved salts—but not so much that it limits its uses (Stearns et al., 1938).

Biota. The area falls within the Snake River Basalts section of the Intermountain Semi-Desert ecoregion province (Figure 5.10) (Bailey, 1995). Vegetation patterns in the area are a function of climate, soil moisture, soil chemistry, and human land uses. The sagebrush steppe of the area is dominated by big sagebrush (*Artemisia tridentata*) and bluebunch wheatgrass (*Agropyron spicatum*) (Bailey, 1995; U.S. Forest Service, n.d.). Greasewood (*Sarcobatus vermiculatis*) is a common shrub in more saline settings.
Common large mammals of the area include mule deer (*Odocoileus Hemionus*), pronghorn antelope (*Antilocapra americana*), and Rocky Mountain elk (*Cervus elaphus nelsoni*). American bison (*Bison bison*), bighorn sheep (*Ovis canadensis*), gray wolves (*Canus lupis*), and grizzly bears (*Ursus arctos*) once roamed this area. Coyotes (*Canis latrans*), cougar (*Puma concolor*), bobcat (*Lynx rufus*), and black bear (*Ursus americanus*) are notable present-day predators. Smaller mammals include yellow pine chipmunks (*Tamias amoenus*) and Great Basin pocket mouse (*Perognathus parvus*). Great Basin spadefoot (*Spea intermontana*), several lizards, and numerous snakes are also present in the area. A variety of birds live here including various hawks, prairie falcons (*Falco mexicanus*), great horned owls (*Bubo virginianus*), and burrowing owls (*Athene canicularia*) (Bailey, 1995; U.S. Forest Service, n.d.).

Human Setting

Race and Ethnicity. The Snake River Plain has a rich racial, ethnic, and religious history encompassing Native Americans as well as subsequent Europeans, Asians, and Latinos (Peterson, 1994; Fiege, 1999). The Japanese Americans who occupied the Minidoka Relocation Center were thrust into this rich melting pot.
Figure 5.9. Ecoregion map showing Minidoka’s location within the Intermountain Semi-Desert ecoregion province. Adapted from Bailey (1995, Foldout Map).
Figure 5.10. Cumulative historical map for Idaho’s south central Snake River Plain including the Minidoka Relocation Center.
Southern Idaho lies within the Great Basin Culture Area of Native Americans (Waldman, 2000). The Northern Shoshone and Bannock were the primary occupants of this area living as nomadic bands following seasonal food resources (Murphy and Murphy, 1986). The influx of EuroAmerican explorers and trappers in the early 19th century followed by Oregon Trail travelers and settlers resulted in conflict with the Native Americans. U.S. Military pressure on the Native Americans ultimately led to their confinement to the Fort Hall Reservation (Figure 5.10) beginning in the late 1860's (Murphy and Murphy, 1986; Gentry, 1995).

Chinese laborers first entered the Idaho Territory soon after 1860 where they secured employment in mining and railroad construction. Among other places, as many as 600 Chinese worked placer mining claims on the Snake River in the vicinity of present-day Twin Falls (Figure 5.10) from 1871 until the early 1880s (James, 1993). The Chinese were subject to racism, discrimination, and violence in places while they were peacefully accommodated in others. Anti-Chinese sentiment was especially harsh during an economic downturn in the mid-1880s. As a result, numbers of Idaho Chinese dropped dramatically between 1870 (4,274) and 1890 (1,971) (Schwantes, 1991).

Basques arrived in the Boise area of southwestern Idaho from California and Nevada beginning in the early 1890s. By World War I, Boise was the Basque center of the Pacific Northwest. At the same time, strong Basque communities existed eastward across the Snake River Plain in Mountain Home, Caldwell, and Shoshone (Figure 5.10) (Etulain, 1974). Many of the Basques were shepherds while others worked in mining, dam building, and irrigation canal construction (Schwantes, 1991).

At about the same time the Basques were coming to the western Snake River Plain, Greeks were arriving on the eastern Snake River Plain and congregating in the Pocatello area. Here, they initially worked for the Oregon Short Line Railroad (see below) but over time migrated to more service-oriented employment (Scott, 1984). Greeks also worked with Italians and Spaniards on the Minidoka Irrigation Project (see below), and some ended up remaining to farm project lands (Stene, 1997). While it appears that Greeks got along with other ethnic groups in Pocatello, the same cannot be said of Greek interactions with other Anglos (Scott, 1984).

Czechoslovaksians migrated to the Buhl and Castleford areas (Figure 5.10) west of Twin Falls beginning in 1908. Most did not immigrate to southern Idaho directly from Czechoslovakia; rather, they came from Texas, Nebraska or Oklahoma where they had first arrived from their native country as early as the 1840s. The draw for the Czechs in southern Idaho was irrigated farmland opened by the Twin Falls Canal Company. While first mostly obtained employment working for others, over time, members of the Czech community were able to purchase farmlands of their own (Gentry, 1987).

Mexican Americans came to southern Idaho beginning in 1919 to work in the sugar beet fields. Mexican laborers also came to the area during World War II as part of the U.S.
Japanese first arrived in Idaho after 1891 and filled the void left by the departed Chinese. They first worked as laborers on the Oregon Short Line Railroad in the Nampa and Pocatello areas (Iwata, 1992). The first Idaho Japanese began to show up in U.S. census data by 1900 (Figure 5.11). Sugar beet labor drew further Japanese Americans to the Nampa, Idaho Falls, Blackfoot, and Sugar City areas beginning in the first decade of the 20th century (Arrington, 1966; Iwata, 1992). Eventually, many of the Japanese immigrants were able to save sufficient funds to purchase their own farms or businesses, and return to Japan to bring wives back to the U.S. where they raised families (Henshall, 1975). Many of the early land-owning Japanese American Issei (i.e., first generation Japanese American born in the U.S.) settled in the vicinity of Idaho Falls and Fort Hall where they first grew sugar beets and subsequently potatoes (Iwata, 1992). The evolution from single male Issei to Issei brides and ultimately Nisei (offspring of Japanese immigrants born in the U.S.) children led to an increasing percentage of U.S. citizens within the Japanese American population (Sims, 1978; Schwantes, 1991). The statewide census data reveal a general upward trend of Japanese Americans from 1900 to 1920 possibly reflecting the growth
of Japanese families as well as further immigrants to the state (Figure 5.11). The total Japanese American population of Jerome County and the surrounding five counties—Lincoln, Minidoka, Cassia, Twin Falls, and Gooding—mirrored the state pattern (Figure 5.11). The dip statewide and in the particular counties in 1930 and 1940 may have been related to economic conditions, changes in immigration laws, or possibly anti-Japanese sentiment.

The Japanese Americans of southern Idaho, like the Chinese immigrants before, faced anti-Asian sentiments from the onset. Japanese were included in the group that was excluded from owning or leasing land in Idaho in a 1923 law. Anti-Japanese sentiment in Idaho reached its zenith in the weeks following the bombing of Pearl Harbor (Sims, 1978). The Japanese Imperial military’s capture and imprisonment of more than 1,000 Idaho-based, Morrison Knudsen construction company employees working on Wake Island further promoted anti-Japanese sentiment in the state (Sims, 1986). In spite of public sentiment, government intrusions into their lives, the federal law that prevented Japanese-born individuals from becoming U.S. citizens, and isolated racial occurrences, Idaho Japanese Americans displayed their patriotism by registering for the draft, pledging allegiance to the U.S., and buying U.S. Defense Bonds (Sims, 1978).

Economic Geography. Hunting and gathering, trapping, and mining were the early economic mainstays in south central Idaho. Transportation, and agriculture have dominated Snake River Plain land use during the past 150 years.

Northern Shoshone and Bannock of southcentral Idaho subsisted on hunting, fishing, and gathering. The Northern Shoshone are differentiated from the Western Shoshone of present-day Nevada by their dependence on horses and equestrian access to bison on the Northern Great Plains. Bison were a staple of the Northern Shoshone and Bannock peoples, being hunted on the Snake River Plain until 1840 and on longer forays to the Northern Great Plains until the 1860s. The Northern and Eastern Shoshone differed in their seasonal dependence on Snake River salmon runs. The Northern Shoshone and Bannock depended on a variety of fish resources, the most prominent of which were salmon caught on the Snake River below Shoshone Falls (Figure 5.10). Camas (Camassia quamash) roots were the chief plant resources gathered by these groups (Murphy and Murphy, 1986).

The first EuroAmericans passing through the area were likely a group of fur-trading Astorians led by Wilson Price Hunt in 1811 (Peterson, 1995). Hunt lost four members of his expedition as well as a boat in the Snake River rapids and falls, including those just below present day Milner Dam (Works Progress Administration, 1937; Peterson, 1995) (Figure 5.10). Subsequent fur explorations by the British-held North West Company and Hudson Bay Company traveled up and down the Snake creating a “fur desert” that kept American interests out of the area thus leaving the lands in British hands (Peterson, 1995). Americans were back in the country by the 1830s with the construction of Fort Hall near modern-day Pocatello. This trading post initially served trappers and subsequently Oregon Trail travelers (Schwantes, 1991).
Agriculture has occurred in south central Idaho since the early 1860s. However, the first attempts at agriculture, driven by the 1862 Homestead Act and the Desert Land Act of 1877, did not lead to long-term EuroAmerican settlement in the area. Idaho Senator William Borah commented “The government bets 160 acres [subsequently changed to 640 acres with the Desert Land Act] against the entry fee of $14 that the settler can’t live on the land for five years without starving to death” (Peterson, 1995).

Sheepherders entered the area in the 1890s practicing a system of *transhumance* between the Snake River Plain winter range and summer range in the hills and mountains north of the plain (Peterson, 1995). This mobile agricultural practice was much better suited to the semi-arid environment than stationary, dryland farming.

Irrigated agriculture began in earnest on the central Snake River Plain by the late 1880s. These attempts were further spurred by the Carey Act of 1894 which allowed states to obtain up to 1 million acres of undeveloped, arid, federal lands within their borders then partner with private entities to develop these lands for irrigated agriculture (Lovin, 1987). Under the Carey Act, a consortium of private canal companies completed Milner Dam (Figure 5.10) in 1903. The U.S. Reclamation Service (later the U.S. Bureau of Reclamation), with the Reclamation Act of 1902, withdrew irrigable lands on the eastern Snake River Plain from public entry and created the Minidoka Project in 1904. The first federal piece of the Minidoka Project, Minidoka Dam (Figure 5.10), was completed in 1906. This dam created Lake Walcott and produced hydroelectric power, some of which was used to pump irrigation water to canals and laterals serving farmland. The first water from Lake Walcott reached “South Side” (i.e., south of the Snake River) farmers in May 1909 (Stene, 1997). Subsequently, the North Side Canal routed irrigation water from Lake Walcott to farmers near Rupert (Bureau of Reclamation, n.d.) (Figure 5.10). The Bureau of Reclamation constructed six other dams and two canals that ultimately became part of the Minidoka Project in 1940. The Milner-Gooding Canal, built to connect the various Carey Act private canals on the “North Side”, was completed in 1932. This canal carried water from behind Milner Dam 70 miles northwest to the Shoshone area irrigating the Gooding Division of the project (Bureau of Reclamation, n.d.). The Minidoka Relocation Center was ultimately constructed within this division (Stene, 1997).

Development of the Minidoka Project was not without problems. High rates of evaporation, leaky canals, poor drainage, and salinization all plagued the project in its early years. North Side canals and laterals lost from 31-46% of all water conveyed in 1912 (Fiege, 1999). The Milner-Gooding Canal experienced these problems because of the fractured basalts of the area (Stene, 1997). This led to attempts by farmers to line canals. Seepage often returned to haunt the irrigators when it encountered an impervious clay layer at depth and eventually rose back to the surface to create waterlogged soils. Farmers and the Bureau of Reclamation had to then develop systems to drain the land of the life-giving water (Fiege, 1999).

Despite these shortcomings, the Minidoka Project was instrumental in the settlement of the area. The name “Magic Valley” was applied to the irrigated area paralleling the Snake River in Cassia,
Gooding, Jerome, Lincoln, Minidoka, and Twin Falls counties because of the conversion of the desert lands into lush, irrigated fields “as if by magic” (Figure 5.10) (Boone, 1988). In 1915, 10,598 people lived in the project area. Following completion of the Gooding Division in 1937, the population had risen to 22,375 within the project boundaries (Stene, 1997). Project lands initially grew much alfalfa but in the ensuing years, small grains, hay, corn, potatoes, sugar beets, beans, onions, peas, apples, pears, and prunes became increasingly common (Fiege, 1999). Livestock included dairy cattle, hogs, sheep, and poultry (Stene, 1997; Claire Ricketts, oral communication, 14 June 2003). As of 1938, the north and south sides of the Minidoka Project irrigated about 106,000 acres (Stearns et al. 1938).

The Snake River Plain has long served as a transportation corridor despite the fact that the incised portions of the Snake River were impediments to travel. Approximately, 50,000 American immigrants crossed the Snake River Plain on the Oregon Trail between 1836 and 1861 en route to the fertile lands of the Willamette Valley and the Puget Lowland. The Snake River Plain portion of the Oregon Trail was often considered the harshest because the immigrants usually arrived at this section of the trail in the heat of summer when water and forage were short. The Snake River and its life-giving waters, despite being visible from above, were often inaccessible to the immigrants because of the deeply entrenched nature of the channel. One Oregon Trail immigrant stated that to make it through the desert portion of the Oregon Trail “a man must be able to endure heat like a salamander, ...dust like a toad, and labor like a jackass” (Peterson, 1995, p. 135). Just below present-day Milner Dam a site known as “The Cedars” was a favorite camp spot for Oregon Trail immigrants because of the shade of the trees and the access to water (Figure 5.10) (Works Progress Administration, 1937). Ben Holladay, the “Stagecoach King”, developed a stage route in 1864 connecting Fort Hall with Walla Walla, Washington. This route resulted in the development of two stage stops in the vicinity of what would become Twin Falls–Rock Creek (approximately 13 miles southeast of present-day Twin Falls) and Desert (within the present-day Twin Falls city limits) (Figure 5.10) (Gentry, 1995). By 1884, the Oregon Short Line, a portion of the Union Pacific Railroad, had extended from Granger, Wyoming and the mainline of the Union Pacific Railroad, across the Snake River Plain to Oregon where it met up with the Oregon Railway and Navigation Company rail line at Huntington, Oregon (Athearn, 1969; Peterson, 1995). Shoshone originated as a rail stop on this line in 1882, and was the origin of a branch line heading north into the Wood River mining district (Works Progress Administration, 1937; Athearn, 1969). The construction of the Oregon Short Line and the subsequent branch line brought Chinese and subsequently Japanese laborers to the area (Arrington, 1994). Tourists often traveled via stage from the Oregon Short Line station at Shoshone to see the falls of the Snake River near present-day Twin Falls (Rhodes-Jones, 1979). The North Side Branch Line Railroad (late the Idaho Short Line) was constructed in 1912 from the town of Minidoka to Bliss by way of Eden and Jerome (Figure 5.10) (U.S. National Park Service, 2006).

On the eve of World War II, the future site of the Minidoka Relocation Center lay in a largely uninhabited area. The towns surrounding the future site were Shoshone, Eden, Twin Falls, and Jerome. All depended on irrigated agricultural and had grown with the Carey Act and the
Reclamation Act. All except Eden were county seats. As of the mid-1930s, the population of these towns was as follows: Shoshone 1,211, Jerome 1,976, and Twin Falls 8,787. Twin Falls was described as the “Metropolis of southern Idaho” (Works Progress Administration, 1937).

Why this Location?

Idaho was likely chosen as a state in which to locate a relocation center because it lay outside the military exclusion area where Japanese Americans were prohibited from relocating. The actual site at Hunt was chosen because of the large amount of Bureau of Reclamation land in the area, and the proximity of Snake River water via the Milner-Gooding Canal meant that the lands could be irrigated (Tamura, 2002) (Figure 5.12). With investment of cheap labor, this land had the potential to be useful after the war (Weglyn, 1996). While roads, a newly constructed railroad spur, and electricity were readily available, the center was sufficiently isolated from Eden, Jerome, Shoshone, and Twin Falls to not pose a threat to those communities, especially when the initial understanding of local residents was that evacuees would be held in a secure facility under the watchful eyes of armed guards (Tamura, 2002; U.S. National Park Service, 2006). The guards were thought to be necessary because Japanese Americans in the six county area including and surrounding the future site of the Minidoka Relocation Center were viewed as a threat to Idaho’s security and the life-giving Magic Valley irrigation canals (Sims, 1986).

The site characteristics, plus the labor needs of Snake River Plain farmers, overrode the concerns of then-Idaho Governor Chase Clark, who, following the Japanese bombing of Pearl Harbor, took every opportunity to denigrate Idaho’s Japanese Americans and any attempts at relocating other Japanese Americans in Idaho (Sims, 1979). Governor Clark told a congressional committee that he was only willing to accept Japanese Americans if they were kept in separate camps under armed guard. His rhetoric of the time indicates that he did not differentiate between Japanese in America and the Japanese our troops were fighting in the Pacific. In a meeting with other western governors and federal officials in Salt Lake City in April 1942, Clark reiterated his demand that any Japanese Americans sent to Idaho be kept in concentration camps under armed guard. Further, he stated that “right on the start, that I am so prejudiced that my reasoning might be a little off, because I don’t trust any of them. I don’t know which ones to trust and so therefore, I don’t trust any of them.” Milton Eisenhower, head of the War Relocation Authority at the time, attributed the failure of the federal government to convince the inland states to accept West Coast Japanese in a voluntary relocation resettlement in independent and self-supporting communities to Clark’s rhetoric (Sims, 1978). Despite outcry by Gooding-area farmers that a Japanese American relocation center might take water that they had long had access to, the War Relocation Authority (WRA) chose to locate the center at Hunt (Sims, 1986). Once this decision was made by the federal government, Governor Clark assured the residents of Jerome County that the Japanese Americans would be kept under armed guard while living in the center, and once the center was closed after the end of the war, all would be removed from the area (Staff, 30 April 1942).
Figure 5.12. Overall map of the Minidoka Relocation Center. Adapted from Burton et al. (2002, p. 204).
Building Minidoka

The Bureau of Reclamation officially transferred the administration of 33,500 acres of the Gooding Division of the Minidoka Project to the WRA in Spring 1942 (U.S. Army–Western Defense Command, 1943). Of this total, 946 acres were used for the actual center, and another 784 were used for agricultural purposes (Thye, 1947) (Figure 5.12). Construction began on 5 June 1942 and was sufficiently complete for the center to open on 10 August. At peak construction, a workforce of approximately 3,000 was employed (Sims, 1986; Burton et al., 2002). The construction of the center had very serious consequences on the area’s wages, labor supply, and housing availability (Sims, 1986). The building of the center effectively ended the Depression in south central Idaho providing well-paying jobs for all who could work. Center construction drove area wages upward. For example, wages were approximately three times higher for carpenters and masons at the center than on the outside (Arrington, 1994). The influx of workers to the area also meant a shortage of housing in the area.

Unlike other relocation centers, Minidoka was not laid out in a square or rectangular fashion based on True North. Instead, topography and the presence of the North Side Canal dictated that the residential, administration, military police, hospital, and warehouse areas be laid out in separate groups (Figure 5.13). Included within the residential area were evacuee barracks plus a variety of services including businesses, a health clinic, fire stations, schools, a gymnasium, baseball diamonds, an ice skating rink, a civic center, and evacuee-operated community offices. Adjacent areas included administrative offices, staff housing, warehouse, motor pool, hospital, and military police. In total, over 600 buildings were constructed at Minidoka. Initially, the center was surrounded by a barbed wire fence and the center’s perimeter was watched over by eight watch towers (Burton et al. 2002).

The residential part of the center had 35 blocks although the blocks were numbered up to 44–i.e., several designated blocks were never developed for barracks (Figure 5.13) (Burton et al. 2002). Because of the impacts of the North Side Canal and topography, the irregular residential area was approximately 2.5 miles long (Takami, 1998). Streets within the main part of the center were labeled A-H, and the avenues denoted 1st -23rd (U.S. National Park Service, 2006). All blocks had 12 barracks, one mess hall, one H-shaped laundry-latrine-shower building, and one recreation building (Burton and Farrell, 2001). Most 20 feet x 120 feet barracks consisted of six single-room apartments that ranged in size from 16 feet x 20 feet (up to 3 people), 20 feet x 20 feet (up to 5 people), and 20 feet x 24 feet (up to 7 people) (Burton and Farrell, 2001; Kleinkopf, 1943). Typically, each block also had two barracks divided into eight apartments that were designed to house bachelors and small families (Robert Sims, written communication, 20 April 2007). Each apartment had a coal stove for heat and one bare light bulb (Burton and Farrell, 2001). The bases of the barracks were skirted to protect the residents from the cold winter winds (Kleinkopf, 1946). Historical photographs show that the external walls and roof were covered with heavy tar paper that was held down with wood battens (Figure 5.14). Each block was designed to handle approximately 250 people (Hausler, 1964). As a comparison, the staff
Figure 5.13. Detailed map of the central portion of the Minidoka Relocation Center. Adapted from Burton et al. (2002, p. 206) and U.S. National Park Service (2006, p. 21).
housing apartments at Minidoka each had a living room, dining room, bathroom, and one or more bedrooms (U.S. National Park Service, 2006).

Domestic water for the center came from four deep, large wells (Kleinkopf, 1946). The well waters were pumped up into large water towers and stored until being gravity-fed to the mess halls, latrine and shower facilities, and various administrative buildings around the center. The sewage treatment plant was located in a swale sufficiently close to the evacuee residential and administrative areas to draw complaints about its foul smells (Kleinkopf, 1943; Burton et al., 2002).

Unfortunately, the center was not finished as the evacuees began to arrive in August 1942. The construction crew was just one block ahead of the incoming evacuees (Spicer et al., 1969). It was not until late January 1943 that the sewage treatment plant was sufficiently complete for outhouses to be abandoned in favor of indoor flush toilets (Hall, 1987). As to the Spartan conditions of the center, Director Harry L. Stafford said: “We must ask ourselves, could we do any less and be Americans? Could we do any more and be taxpayers?” (Miller, 1990).
Figure 5.15. The Western United States origins of Japanese Americans evacuated to Minidoka in August and September 1942. Data from U.S. Army–Western Defense Command, (1943, p. 381, 383) and U.S. War Relocation Authority (1946, p. 61-66).

Origins of the Evacuees

Minidoka’s original evacuees came from Washington and Oregon via the Puyallup and Portland assembly centers, and to a lesser degree from California by way of the Santa Anita, Tanforan, and Tulare assembly centers (U.S. Army–Western Defense Command, 1943). Specifically, most of these individuals were from Washington’s King (6,098) and Pierce (1,051) counties, and Oregon’s Multnomah (1,927), Clackamas (144), and Washington (141) counties (Figure 5.15).
Another 12 Washington counties added 91 evacuees, ten Oregon counties contributed 93 evacuees, and 19 California counties sent 169 evacuees. Alaska added another 134 evacuees (U.S. War Relocation Authority, 1946; Naske, 1983). Most of the center’s population was urban and 60% were American citizens (U.S. War Relocation Authority, 1946; Japanese American National Museum, n.d).

The first trainload of evacuees arrived at Minidoka on 10 August 1942 from the Puyallup Assembly Center (U.S. Army–Western Defense Command, 1943). The Idaho Short Line Railroad spur line three miles south of the center was the off-loading point for the evacuees and their baggage (Burton et al., 2002; Kleinkopf, 1942). It took just over one month for all of the Puyallup and Portland evacuees to arrive by train (U.S. Army–Western Defense Command, 1943). With a maximum population of 9,397, Minidoka became Idaho’s 8th largest city (U.S. War Relocation Authority, 1946; Arrington, 1994).

Interaction of Evacuees with South Central Idaho’s Environments

Physical Environment. When they came through the main gate at Minidoka, many evacuees were entering a world far different than the one they had lived in prior to the assembly centers. One youth described the changes to the new environment as: “The war has brought to me many changes, as it has to other people. From a world of sidewalks and tall buildings to another place with dust, sagebrush, and uncomfortable living...” (Sims, 2000, p. 9). To another “Minidoka is a vast stretch of sagebrush stubble and shifting, swirling sand–a dreary, forbidden, flat expanse of arid wilderness. Minidoka...is the sort of place people would normally traverse only to get through to another destination” (Fiset, 1997, p. 66-76). Another described the desert setting with its rows of barracks as “...flat brown earth and gray low buildings” (Chase, 2000, p. 3).

It was the dust and heat that most of the evacuees initially commented on in August and September 1942: “We felt as if we were standing in a gigantic sand-mixing machine as the sixty-mile gale lifted the loose earth up into the sky, obliterating everything. Sand filled our mouths and nostrils and stung our faces and hands like a thousand needles” (Sone, 1953, p. 192). The assistant project director described Minidoka on its “opening day” as: “It was hot, dusty, desolate. Flat land, nothing growing but sagebrush, not a tree in sight...Bulldozers were still filling in ditches while registration went on; the air was choked with dust; so were the people” (Spicer et al., 1969, p. 72).

Blowing dust was a common occurrence because of the overall dry and windy conditions, and the disturbed nature of the center’s surfaces. At times blowing dust limited visibility to tens of feet making breathing difficult, and causing overall health issues (Kleinkopf, 1942; 1943). Because of the lack of ceilings and inside walls that extended to the barracks roofs, apartments were constantly dust-covered (Arrington, 1994). To many Issei, who considered cleanliness essential, this was a huge issue (Maeda, 1976). Minidoka’s hot, dry summers forced evacuees to place buckets of water in their apartments to increase the humidity and cool the air (Fiset, 1997).

Wildfires occurred as a result of the hot, dry, and windy conditions. Contrasting temperatures
were a problem as well. Summer temperatures ranged from blazing hot to sufficiently cold that the coal stoves needed to be fired up—all in a span of several days (Kleinkopf, 1943)!

The winter of 1942-43 was especially troublesome to evacuees who were not accustomed to the low temperatures and who faced coal shortages early on (Burton and Farrell, 2001). By November 12, the thermometer had plummeted to -14°F. Coal was not plentiful in the center until 23 November 1942. Evacuees were forced to burn sagebrush if stoves were even installed in their apartments. At times, they burned sagebrush outside the barracks to keep warm. Even when the coal arrived it was of poor quality thus produced excessive smoke and required that stove pipes be cleaned every few days (Kleinkopf, 1942). The black tarpaper-covered barracks with no insulation or interior wall coverings provided little relief from the winter cold, or from the winds that blew dust in through every crack and crevice (Yamaguchi, 1989). Cold weather brought other woes—e.g., it drove rattlesnakes into the areas under the barracks (Kleinkopf, 1942). Overall, average temperatures for most months during the August 1942 - October 1945 periods were colder than the 1931-1960 average. This was especially true of April through September during each of the war years (Western Regional Climate Center, n.d.b). While winters were cold, the snows of winter brought a welcome relief to the drab landscape (Yamaguchi, 1989).

Conversely, snowmelt and rainy weather meant walking through mud on the unpaved walkways and roads (Maeda, 1976). Rain often came in bursts resulting in flooding and muddy conditions (Yamaguchi, 1989; Fiset, 1997) (Figure 5.16). The muddy conditions were especially true in the early months of the center until crews graveled road and walkway surfaces (Staff, 19 December 1942; Staff, 13 January 1943; Kleinkopf, 1942). Because of the location of the evacuee residential blocks in the depressions on the landscape, this area was likely the wettest, gathering moisture from the surroundings.

Agriculture. The goal of the agricultural program was to grow sufficient crops to feed the center, and if there were surpluses, to trade crops with other centers. Further, the agricultural program was to provide constructive employment for many of the evacuees and to aid the war effort through the raising of crops (Rice and Beebout, 1946). To accomplish these goals, the evacuees had to literally start at the beginning. None of the area had been previously farmed. Relatively few of the evacuees were previously farmers, and of those who had been farmers, only a handful had farmed with irrigation. Finally, the WRA need to acquire the necessary equipment, and evacuees had to build the necessary infrastructure for the farm operation. Part of the agreement between the WRA and the Bureau of Reclamation for siting the center on these lands and having access to Snake River water was that evacuees would develop a portion of the Gooding Division of the Minidoka Project by maintaining the Milner-Gooding Canal, building laterals from that canal to center lands, and clearing and leveling lands for agriculture (Stene, 1997; Thye, 1947). Ultimately, the native lands developed for agriculture would be ready for “homesteaders” to enter the area following the closure of the center (Stene, 1997).
Evacuees began clearing sagebrush, leveling, building irrigation laterals and ditches, and otherwise preparing lands for farming in fall 1942 and spring 1943. Irrigation waters came to the area from the diversion on the Snake River at Milner Dam 20 miles southeast via the Milner-Gooding Canal (Figure 5.10) (Burton et al., 2002). Despite the proximity of the North Side Canal to the relocation center, its waters could not be used on the center lands without an expensive pumping plant (Figure 5.12). Instead, evacuees had to construct irrigation Lateral 21.5 from the Milner-Gooding Canal approximately 6.5 miles westward and add to that approximately 45 miles of irrigation and drainage ditches (Kleinkopf, 1946; Rice and Beebout, 1946; Burton et al., 2002). By the end of 1944, the evacuees had cleared 1,166 acres of farmland although they actually farmed less than one-half of those acres (Figure 5.17) (Rice and Beebout, 1946).

Evacuees ultimately raised 30 different types of produce for consumption in the center mess halls (Table 5.1) on a total of nearly 226 acres in 1943 and 308 acres in 1944 (Table 5.2). A total of over two million pounds of produce were grown in 1943 and over three million pounds in 1944 (Table 5.2). The 1943 yields had a market value of $58,147 while the 1944 produce was valued at $102,640 (Rice and Beebout, 1946) (Table 5.2). Tender plants such as tomatoes, eggplants,
Figure 5.17. Agricultural lands of the Minidoka Relocation Center, Idaho. Adapted from Burton et al. (2002, p. 208).
Table 5.1. Crops and livestock raised at the Minidoka Relocation Center, 1943. Data from Rice and Beebout (1946, Exhibits 1-10).

<table>
<thead>
<tr>
<th>Produce</th>
<th>Produce (continued)</th>
<th>Feed Crops</th>
<th>Livestock</th>
</tr>
</thead>
<tbody>
<tr>
<td>beans (dry white)</td>
<td>honeydew melon</td>
<td>barley</td>
<td>chickens</td>
</tr>
<tr>
<td>beans (green)</td>
<td>lettuce (head)</td>
<td>oats</td>
<td>hogs</td>
</tr>
<tr>
<td>beans (soy)</td>
<td>mustard greens</td>
<td>rye</td>
<td></td>
</tr>
<tr>
<td>beets (table)</td>
<td>nappa</td>
<td>wheat</td>
<td></td>
</tr>
<tr>
<td>broccoli</td>
<td>onions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cabbage</td>
<td>peas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cantaloupe</td>
<td>peppers (green)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>carrots</td>
<td>potatoes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cauliflower</td>
<td>radishes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>celery</td>
<td>shingiku</td>
<td></td>
<td></td>
</tr>
<tr>
<td>corn (sweet)</td>
<td>spinach</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cucumber</td>
<td>squash</td>
<td></td>
<td></td>
</tr>
<tr>
<td>daikon</td>
<td>tomatoes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>eggplant</td>
<td>turnips</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gobo</td>
<td>watermelon</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

peppers, eggplants, celery, and broccoli were started in hot beds. Manure for the hotbeds was obtained from nearby livestock operations (Staff, 19 June 1943; Rice and Beebout, 1946). The first produce to reach the mess halls were radishes in early June 1943 (Kleinkopf, 1943). The big producers in terms of tonnage were potatoes, onions, carrots, cabbage, turnips, nappa (i.e., Chinese cabbage), squash, and watermelons (Rice and Beebout, 1946). Produce not eaten fresh was stored in a large root cellar and included potatoes, carrots, cabbage, and onions (Rice and Beebout, 1946). A large scale attempt at canning tomatoes did not yield good results in fall 1943 thus was discontinued. However, a pickling plant began operation in fall 1943 preserving a variety of produce including turnips, daikon, cabbage, carrots, nappa, cantaloupe, and honeydew melon. Much of this produce was pickled during the winter months when farm workers were idle. The pickling plant was temporarily closed in March 1944 when it was discovered that some of the evacuee workers were using the facilities to manufacture sake. The plant was reopened.
Table 5.2. Produce and feed crops, Minidoka Relocation Center, 1942-1945. Data from Rice and Beebout (1946, Exhibits 1-10).

<table>
<thead>
<tr>
<th>Produce</th>
<th>1942</th>
<th>1943</th>
<th>1944</th>
<th>1945</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Acres Harvested</td>
<td>0</td>
<td>226</td>
<td>308</td>
<td>0</td>
<td>534</td>
</tr>
<tr>
<td>Total Production (lbs)</td>
<td>0</td>
<td>2,222,062</td>
<td>3,369,205</td>
<td>0</td>
<td>5,591,267</td>
</tr>
<tr>
<td>Consumed at Center (lbs)</td>
<td>0</td>
<td>2,161,062</td>
<td>1,881,044</td>
<td>0</td>
<td>4,042,106</td>
</tr>
<tr>
<td>Shipped to Centers (lbs)</td>
<td>0</td>
<td>61,000</td>
<td>1,488,161</td>
<td>0</td>
<td>1,549,161</td>
</tr>
<tr>
<td>Total Market Value ($)</td>
<td>0</td>
<td>$58,147</td>
<td>$102,640</td>
<td>0</td>
<td>$160,787</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Feed Crops</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Acres Harvested</td>
<td>0</td>
<td>0</td>
<td>314</td>
<td>0</td>
<td>314</td>
</tr>
<tr>
<td>Total Production (lbs)</td>
<td>0</td>
<td>0</td>
<td>435,183</td>
<td>0</td>
<td>435,183</td>
</tr>
<tr>
<td>Fed at Center (lbs)</td>
<td>0</td>
<td>0</td>
<td>370,455</td>
<td>0</td>
<td>370,455</td>
</tr>
<tr>
<td>Shipped to Centers (lbs)</td>
<td>0</td>
<td>0</td>
<td>64,728</td>
<td>0</td>
<td>64,728</td>
</tr>
<tr>
<td>Market Value ($)</td>
<td>0</td>
<td>0</td>
<td>$9,217</td>
<td>0</td>
<td>$1,478</td>
</tr>
</tbody>
</table>

in August 1944 and operated until the end of 1944 when plans were made to close the center. Produce beyond that consumed fresh or pickled was shipped to other centers in 1943 and 1944 (Table 5.2). All produce operations in the agricultural program were terminated once the West Coast Exclusion Order was lifted in December 1944 (Rice and Beebout, 1946).

In addition to produce, evacuees raised chickens for meat and eggs, and hogs for meat (Tables 5.1 and 5.3). Poultry were raised in 1943, 1944, and 1945. The program reached its productive peak in 1944 with over 42,000 pounds of poultry and over 62,000 dozen eggs sent to center mess halls (Table 5.3). Hogs were fed mess hall kitchen scraps plus feed crops raised on the center farms (Table 5.2). Nearly 60,000 pounds of dressed pork was raised in 1943, over 293,000 pounds in 1944, and nearly 126,000 pounds in 1945. The variation in production during these years reflects problems associated with initiating production (1943) and winding down for center closure (1945). Feed crops were only raised in 1944 with most fed to center livestock and a small amount shipped to other relocation centers (Tables 5.1 and 5.2) (Rice and Beebout, 1946).
Table 5.3. Livestock yields, Minidoka Relocation Center, 1942-1945. Data from Rice and Beebout (1946, Exhibits 1-10).

<table>
<thead>
<tr>
<th></th>
<th>1942</th>
<th>1943</th>
<th>1944</th>
<th>1945</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chickens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Butchered</td>
<td>0</td>
<td>1,130</td>
<td>7,215</td>
<td>9,274</td>
<td>17,619</td>
</tr>
<tr>
<td>Meat Total Weight (lbs)</td>
<td>0</td>
<td>6,788</td>
<td>42,609</td>
<td>39,517</td>
<td>88,914</td>
</tr>
<tr>
<td>Market Value ($)</td>
<td>0</td>
<td>2,710</td>
<td>16,186</td>
<td>14,909</td>
<td>$33,805</td>
</tr>
<tr>
<td>Eggs (dozen)</td>
<td>0</td>
<td>4,170</td>
<td>62,730</td>
<td>23,415</td>
<td>90,315</td>
</tr>
<tr>
<td>Market Value ($)</td>
<td>0</td>
<td>2,140</td>
<td>24,018</td>
<td>11,218</td>
<td>$37,376</td>
</tr>
<tr>
<td>Hogs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Butchered</td>
<td>0</td>
<td>278</td>
<td>1,432</td>
<td>627</td>
<td>2,337</td>
</tr>
<tr>
<td>Dressed Weight (lbs)</td>
<td>0</td>
<td>59,697</td>
<td>293,259</td>
<td>125,767</td>
<td>478,723</td>
</tr>
<tr>
<td>Market Value ($)</td>
<td>0</td>
<td>11,147</td>
<td>52,454</td>
<td>22,873</td>
<td>$86,474</td>
</tr>
</tbody>
</table>

Minidoka agriculturalists faced obstacles in everything from land clearing to harvest, many of which were centered around the issue of insufficient labor and machinery. If measured by the initially lofty goals of the WRA, Minidoka’s agricultural program was only marginally successful. However, if put into the context of incarcerated people who had little experience with irrigated agriculture and animal husbandry, who were trying to build a subsistence-based farm program while being pressured to relocate, the programs were quite successful. Minidoka’s agricultural program helped feed Minidoka evacuees as well as other relocation center evacuees, provided meaningful employment to evacuees, and paved the way for future farming in the area. (Rice and Beebout, 1946).

Business and Industry. Minidoka had a variety of Consumers Cooperative businesses including shopping (general stores, clothing and dry goods stores, mail order stores, flower shop, and a newspaper distribution agency), beauty (barber shops and a beauty shop), repair (watch repair stores and radio repair shops), cleaning (a dry cleaning business), entertainment (a motion picture department), and banking (a check cashing service) (Staff, 25 September 1943; Burton et al., 2002). Evacuees paid for these services with their savings as well as meager earnings from working in the center. Wages for center employment ranged from $12/month for unskilled labor to $19/month for professionals (Spicer et al, 1969). The center newspaper, the *Minidoka Irrigator*, was printed from August 1942 until July 1945.
Industry at Minidoka was limited to a sewing factory that produced clothing for the center’s use and a plant that manufactured tofu for the center’s dining halls. The sewing project was involved in sewing repairs as well as making new items including cook’s uniforms, various aprons, work gloves, baseball bases, judo outfits, and truck covers. The sewing operation began in winter 1943 and continued into spring 1945. Tofu was manufactured at Minidoka beginning in fall 1942 and continued through summer 1945. The unsuccessful attempt at growing soy beans on the center’s farms may have been to supply the tofu manufacturing needs of the center (Rice and Beebout, 1946).

Landscaping and Gardening. Evacuee gardeners brought seedlings, bonsai trees, vines, ferns and edible plants from their homes, via the Puyallup and Portland assembly centers, to Minidoka for transplanting to soften the harsh center conditions and to provide remembrances of coastal Washington and Oregon (Tamura, 2002). As early as October 1942, rye was seeded in the open spaces within the evacuee residential area (Figure 5.18) and gardens incorporating native plants, small ponds, and basalt stone borders were present near the barracks doorways (Kleinkopf, 1942, p. 17, 23) (Figure 5.19). Basalt boulders were transplanted from miles around the center, sometimes in homemade carts. Some purchased seeds from Sears Roebuck catalogs while the Twin Falls Chamber of Commerce, ministerial associations, and garden clubs also banded

together to provide Minidoka residents with flowers, shrubs, seeds, and trees for center landscaping needs (Kleinkopf, 1943; Staff, 27 March 1943; Tamura, 2002). Lawns were planted near the barracks as were shade trees (Kleinkopf, 1943; Yamaguchi, 1989). A “sagebrush park” was constructed near Blocks 16 and 17 and a traditional Japanese garden with basalt stones hauled by cart from as far as two miles away, ponds, and a fountain was created in Block 5 (Kleinkopf, 1944; Eaton, 1952). Besides the barracks gardens established throughout the center, Japanese Americans designed, constructed, and maintained the large Japanese-style garden at Minidoka’s entrance (Tamura, 2002) (Figure 5.13).

Victory gardens were also planted throughout the center. By June 1943, “every barrack [had] vegetables and flowers growing near the doorway” (Kleinkopf, 1943, p. 53). Gardening occurred despite the lack of irrigation ditches and water in the residential part of the center until early July 1943 (Kleinkopf, 1943). Residents also raised chickens within the residential blocks (Kleinkopf, 1944). The cellars present beneath many of the barracks were likely used to store some of this produce (Kleinkopf, 1945). Victory gardens also involved school teachers and students with gardens set up around the schools (Kleinkopf, 1943).
The abundance of barracks gardens at Minidoka and the other relocation centers were the result of the gardening and landscaping backgrounds of many of the evacuees, the ample raw materials for the gardens, the active support of gardening by the WRA, and cultural characteristics that deplored idleness, admired nature and aesthetics, practiced collective cooperation, and Gaman—the determination to persevere. Gardening, and the act of growing things, was therapeutic for the evacuees, and allowed them to have some control over their surroundings. The aesthetically pleasing gardens offered evacuees respite from harsh environments. Center victory gardens were also signs of their patriotism and provided the Japanese with the foods that they had traditionally eaten. The very Japanese nature of the more ornamental gardens allowed evacuees to express their ethnic identity. Gardening in Minidoka could also be viewed as an act of defiance by evacuees who constructed these private gardens on WRA lands, pilfered WRA materials for the gardens, and walked outside of center to obtain raw materials from the surrounding landscape (Tamura, 2002).

Education. Minidoka offered K-12 and adult education programs to its evacuees. Approximately 27% of the center’s population were of K-12 age as of 1 January 1943 (U.S. War Relocation Authority, 1946). Two elementary schools were established in existing barracks—Stafford in Block 32 and Huntville in Block 10—while Hunt High School occupied all of Block 23 (Figure 5.13) (Hausler, 1964; Kleinkopf, 1945). The academic program was based on an experimental curriculum developed by Stanford University that ironically emphasized democracy and Americanization (Hausler, 1964).

While meeting the basic educational needs of Minidoka’s children, the education system at Minidoka was beset by a variety of problems. Minidoka’s education facilities and staff were Spartan. The two elementary schools cumulatively served an average student population of nearly 800 students/year while the single junior-senior high school enrolled approximately 1,300 students/year (Kleinkopf, 1945). The barracks that served as classrooms were overcrowded, and teaching supplies, including textbooks, were in short supply from the onset. Student/teacher ratios were very high. On the opening day of the elementary schools, 775 pupils were served by ten teachers. Student teachers often had to serve as actual teachers (Kleinkopf, 1942). As a result of all of these issues, neither teachers nor student teachers typically stayed long at the center (Kleinkopf, 1942; 1943; 1944; 1945; 1946).

Adult education courses began in fall 1942 with the goal of Americanization via English language and U.S. history courses. Another goal was to prepare evacuees for relocation by offering vocational courses such as welding, animal husbandry, farm carpentry, bookkeeping, and typing. Hobby-type courses were also offered including needlework, flower arrangement, and cooking (Staff, 2 December 1942; Hausler, 1964).

A highlight of the educational program was the presence of three libraries within the schools, and an additional circulating public library. The public library ultimately housed 22,000 books, and subscribed to several newspapers and approximately 100 magazines. Many of the books came
from Pacific Northwest library and citizen donations, and included a significant number of Japanese language books (Staff, 11 November 1942; Staff, 15 May 1943; Hausler, 1964).

Recreation. As at other centers, boredom was a key issue at Minidoka. A community activities program was established to provide evacuees with recreation opportunities. These activities included movies, fishing and an associated fishing derby, art exhibits, home furniture exhibits, kite flying contests, Japanese classic plays, and softball tournaments (Kleinkopf, 1944). Church groups and other organizations in the Seattle area provided the center with pianos (Kleinkopf, 1943).

Baseball and swimming were common in the summer months. Baseball was the most popular sport in center (Yamaguchi, 1989). By 1945, the center had at least 15 baseball and softball diamonds (U.S. National Park Service, n.d.) (Figure 5.13). The center held a Sagebrush World Series among all of the blocks (Yamaguchi, 1989). The Hunt High School team, after playing the high schools of the neighboring towns of Eden, Jerome, Rupert, Nampa, Burley, and Idaho Falls, went undefeated (Kleinkopf, 1945; Yamaguchi, 1989). A crowd of 3,000 rooted for the team’s season opening victory over Twin Falls High School. The Hunt All-Stars, a semi-pro team formed in 1943, played in the Southern Central Idaho League with teams including Buhl, Burley, Eden, Filer, Jerome, and Rupert. The team was largely composed of former Seattle Courier League players. Ultimately, they finished 4th in the 1943 state semi-pro tournament. Softball was also popular with the center hosting a 20-team softball tournament in 1944. Many of the participating teams came from outside the center. Two “Old Timers” leagues formed in 1943 and included a seven day tournament that featured 14 block teams. Some of the Old Timer games were played in front of crowds of 500 or more (Mullan, 1999). Similar participation occurred in 1944 when the old timers attracted “great throngs of people” to their games (Kleinkopf, 1944). Baseball perhaps meant more to the Issei than to all other evacuees as indicated by the following Minidoka Irrigator column (Jawn, 11 September 1943, p. 7):

> “Anytime you can’t find your ‘pop’, just go out to the baseball field and ... you’ll find him there. Since evacuation, our ‘old men’ have been eating and sleeping baseball day and night. ‘Bull sessions’ are always going on by boiler rooms and the main topic seems to be about baseball. Yup! Old man baseball reigns supreme among our dads and have helped make life more pleasant for him. Without this game, he’d be lost...”

Swimming and generally playing in the waters of the North Side Canal were common until drownings occurred in June and September 1943 (Staff, 26 June 1943; Staff, 4 September 1943). Two swimming holes were subsequently constructed using North Side Canal water (Figures 5.13 and 5.20). Fishing in the North Side Canal was also a common activity where trout, squaw fish, and carp were caught (Kleinkopf, 1943).

An area near the high school was surrounded by berms to serve as the skating rink but it is not clear whether it was ever used because it did not initially hold water (Kleinkopf, 1942; 1943). A
Figure 5.20. Swimming at swimming hole #1, Minidoka Relocation Center. North Side Canal water flows into pool and out again. Average pool depth was six feet. Francis Stewart photograph, August 1943. Courtesy of the Bancroft Library, University of California, Berkeley. Volume 78, Section G, WRA # -238, War Relocation Authority Photographs of Japanese-American Evacuation and Resettlement, Series 9: Minidoka Relocation Center, Hunt, Idaho.

A rink was built and used for ice skating near Block 44 along the North Side Canal (Burton and Farrell, 2001). Ice hockey was played at Minidoka after center residents received a donation of gear from the Seattle Civic Ice Arena (Staff, 27 January 1943). Kids also sledded on the low hills of the center (Figure 5.21).

Scouting was a common activity for kids with strong Boy Scout and Girl Scout troops forming at Minidoka that offered kids the opportunity to leave the center’s confines for camping trips (Kleinkopf, 1942; 1943). Summer camps for Boy and Girl Scouts were held in the Sawtooth Mountains to the north of the center (Staff, 1 July 1944; Staff, 16 September 1944a).

A combination gymnasium/auditorium that was initiated in October 1943 was never fully completed because of issues between evacuee laborers and the center administration (Kleindkopf, 1943; Burton and Farrell, 2001). As a result, Minidokans did not have the
basketball games, volleyball matches, plays, and large public performances that occurred at other centers.

Culture and Art. The culture of Minidoka was purposefully American. This was seen in the language, dress, housing, meals, recreation, and business interactions. However, Japanese cultural influences were also seen throughout the center. The Issei often conversed in Japanese. Buddhism had a strong following in the center and included traditional ceremonies including the _Obon_ (a festival to honor the dead) (Staff, 16 September 1944b). Mess hall meals included traditional foods such as rice, tofu, and _shoyu_. New Years’ celebrations involved _Mochi-gome_
(sticky rice pounded and formed into balls) in each of the three New Years in the center (Staff, 2 January 1943; Staff, 27 November 1943; Staff, 16 December 1944). Traditional board games such as go, shogi, and karuta were also played in the center (Staff, 9 January 1943). Evacuees used their traditional flower arranging and landscaping skills at Minidoka to create sagebrush displays and gardens (Eaton, 1952). Despite the lack of trees, traditional woodworking flourished at Minidoka as evidenced in intricate woodcarvings, wood shaping of walking canes, and sagebrush and greasewood sculptures (Eaton, 1952) (Figure 5.22). One evacuee even painted small stones as characters of Japanese folk tales (Eaton, 1952).

Faith and Spirituality. Various editions of the Minidoka Irrigator reveal that Protestants, Catholics, and Buddhists practiced their respective faiths at Minidoka (e.g., Staff, 16 September 1944b). Five protestant denominations combined to form the Federated Christian Church. The two EuroAmerican pastors and eight Japanese American pastors who served the combined church each moved from the Seattle area to be closer to their congregations. Episcopalians had their own services as well as two schools in the center. The Catholics were served by a priest who had moved to the area from Seattle. Three Buddhist churches operated in the center–Hunt, Nichiren, and United (Staff, 16 September 1944b; Hall, 1987; Fiset, 1997).

Health. The Minidoka Hospital complex consisted of 17 buildings located near the west end of the center (Figure 5.15) (Burton et al., 2002). The health care system at Minidoka was apparently poorly equipped and operated. Evacuees, particularly the Issei, depended on traditional Japanese medicine including Hari (a form of Japanese acupuncture), Moxa (application of a burning material to a particular vital spot), and Anma (a form of massage) (Hall, 1987).

Several health issues of note occurred during the center’s three years of operation. Approximately 60 residents experienced ptomaine poisoning in September 1942. Residents were also plagued with widespread intestinal flu from time to time. At one point, the center’s water supply was contaminated thus the administration was forced to use huge amounts of chlorine to make it safe (Hausler, 1964). The causes of much of the center’s illness can likely be traced back to the different living conditions–i.e., crowding, stress, climate, and diet–than what residents had experienced prior to evacuation.

Government. The WRA expected that Minidoka evacuees would establish a form of self-government. Block Managers addressed the day-to-day issues of center operation. Because they were appointed by the center administration, they were considered “stooges” and “WRA dogs” by the evacuees (Hausler, 1964). In response to the expectation of self-government, two delegates were elected by each of their respective residential blocks. These delegates, in turn, selected a seven-member committee to draft a self-government charter. A draft of the charter was presented to Project Director Harry Stafford in November 1942. Stafford subsequently rejected the charter, supposedly because disturbances at other centers dictated that the time was not right for self-government at Minidoka. After pressure from the WRA Chief Dillon Myer and the 70 block delegates, center administrators suggested that evacuees submit a new charter. This charter was approved by the Project Director but subsequently rejected by evacuee voters in June 1943 by a two to one margin. With this rejection, Minidoka was the only center without a form of self-government. Possible reasons for the failure to ratify the charter included poor presentation of the charter to the voters prior to the vote, general apathy, an already functioning informal form of governance within the blocks, and the sense that any form of self-government was really a farce when U.S. citizens were incarcerated within a relocation center. It was not until late December 1943 that a charter was approved for self-government within the center. A Community Council elected in mid-February 1944 was to submit recommendations to the Project Director, organize committees to assist the Council in its work, and determine the rules of discipline under which the center would operate. Committees established by the council.
examined issues surrounding employment, food, housing, and public relations. Ultimately, Minidoka’s self-government was never more than an advisory body (Hausler, 1964; Hall, 1987).

Community. Minidoka was often considered a “model center” in terms of internal harmony (Hall, 1987). Perhaps this was because Seattle and Portland neighborhoods were housed as homogenous neighborhoods in the center blocks (Takami, 1998). In general, the Washington evacuees occupied the west end of the residential area and the Oregon evacuees occupied the east end (Hall, 1987). However, the dynamic nature of the center populace slowly changed this pattern over time.

While the center was relatively quiet in terms of internal disturbances, its residents practiced passive resistance and protest of evacuation and incarceration via open complaints, work stoppages and slowdowns, internal elections, uncooperativeness, smuggling, possession of contraband, and practice of Japanese customs (Hall, 1987). The more passive nature of Minidoka evacuee’s resistance to WRA policies may be attributed to their origins and the relative geographic homogeneity of the center as opposed to the “hotbed” of racial discrimination nearer the West Coast (Hall, 1987; Weglyn, 1996). One may also attribute some of the passiveness to the work of the center administration who were proactive in dealing with center issues including putting respected Issei elders in charge of leading community discussions on complex and controversial topics such as Japanese participation in the war (Spicer et al., 1969; Weglyn, 1996). As a result, the “loyalty questionnaire” (Appendix C) and the subsequent military draft for young men had less negative effect on Minidoka than on many of the other centers.

Unsettled conditions were present, especially in the months immediately following the opening of the center. These conditions resulted from a variety of issues including the fact that the Japanese Americans were relocated to bleak southern Idaho, incarcerated behind a barbed wire and temporarily electrified fence, lived under substandard conditions, and were subsequently expected to join the armed forces to prove their patriotism (Hall, 1987). The center’s relocation policy was also a source of friction between the evacuees and the administration (Spicer et al., 1969). Boilermen and janitors went on strike for six days in the cold winter of 1944. The strike originated because of issues surrounding the unsuccessful resolution of a staff shortage, dislike of the EuroAmerican Superintendent of Maintenance, and low wages. Other evacuee workers went out on a sympathy strike. The lack of hot water threw the community into conflict. The issue was eventually resolved when the administration resolved some of the staffing issues (Iwamoto, 1946). Mail carriers went on strike soon after the draft began because of staff cutbacks and perhaps because the mail included draft notices. Thirty-four Minidoka evacuees were convicted of draft evasion in federal court in Boise. Most of these were sentenced to 39 month sentences in a Federal penitentiary plus required to pay $300 fines (Hall, 1987).

Interaction with Surrounding Areas

The Outside World. Interactions with the surrounding areas occurred through the building of the center, outside employment, music, sports, school activities, and shopping. Interactions with
areas outside the center were much more common here than in the California and Arizona centers because Minidoka was outside the Military Exclusion Zone.

Minidoka musicians played in the surrounding areas. These included Louie Sato and his Harmonaires who played at area high schools. The Minidoka Mass Choir played in Jerome, Twin Falls, and Burley (Ricketts, 1982; Yamaguchi, 1989).

The center’s baseball teams played surrounding community teams and typically fared very well (Kleinkopf, 1943; 1944). Minidoka student teachers visited surrounding schools to observe techniques and methods. The welcomes received at these schools were a morale boost for the aspiring teachers. Other students participated in competitions at schools outside the center (Kleinkopf, 1943). Students enrolled in the summer school program in 1944 were treated to a stay at a Baptist Church camp in the Sawtooth Mountains north of the center (Kleinkopf, 1944).

Evacuees were often able to secure passes for shopping in Twin Falls and Jerome and make the trip by bus from the center (Kleinkopf, 1943). Jerome and Twin Falls businesses regularly advertised in the Minidoka Irrigator as did a private bus company that offered service to Jerome, Twin Falls, and Eden. The presence of the evacuees in these towns was met with mixed reactions. Merchants, with a few exceptions, generally enjoyed the increased business (Kleinkopf, 1943). Local residents at times resented these visits because of Japanese customs often displayed by the evacuees and the way the evacuees often congregated in small groups as they traveled about town (Kleinkopf, 1942). Further, evacuees often competed for the same hard-to-find items as the local residents (Kleinkopf, 1943).

In addition to local trips, evacuees could also leave the center on short-term, seasonal, and indefinite leaves. Short-term leaves ranged from several days to a few weeks and were typically for personal business or medical issues. Seasonal leaves were granted to evacuees for seasonal agricultural employment. The purpose of indefinite leaves was to permanently depart the centers for relocation to the “outside world”, join the armed forces, be interned in a Department of Justice Internment Camp, committed to an institution, or repatriated to Japan (U.S. War Relocation Authority, 1946).

Through pleas of patriotism and economic need the center administration, farmers, and sugar beet companies were able to get Minidoka evacuees to area farm fields to help harvest crops. This occurred in spite of the initial negative comments made about Japanese Americans by Idaho Governor Chase Clark. Evacuees who worked in the farm fields outside the center could live in the center and commute to the fields each day, could live on the farms on which they worked, or could live in Government-run labor camps. Evacuees were generally well-received by the area’s farmers despite the fact that most came from urban backgrounds and were not used to hard, physical farm labor. Approximately 2,000 men, women, and high school age children answered the call to work in the region’s farm fields resulting in the late start of Minidoka High School in fall 1942 (Sims, 2000). Japanese American laborers (from Minidoka as well as those living in the surrounding area) harvested 24% of Idaho’s 78,000 acres of sugar beets in 1942. This
acreage resulted in approximately 255,000 tons of sugar beets. Overall, most were treated well by the surrounding communities after some initial rocky times (Fiset, 1999). A positive aspect of these seasonal leaves were the interactions with the local populace surrounding Minidoka (Sims, 2000). Long-time area resident Claire Ricketts’ family hired a small crew of Japanese Americans to top sugar beets and help harvest sugar beets, potato, and bean crops. While initially apprehensive, he ultimately said he couldn’t have asked for finer workers and finer people (Claire Ricketts, oral communication, 14 June 2003). It was in the labor camps that the Japanese Americans interacted with other “outsiders”—migratory workers from the Midwest and Southern U.S. as well as Mexico and Jamaica (Sims, 2000). Some of Minidoka’s Japanese Americans who chose to work outside the center on Minidoka Project farmlands were housed at an old Civilian Conservation Corps (CCC) camp in Paul in fall 1942 (Figure 5.11) (Stene, 1997). Subsequent Minidoka farm workers also likely interacted with Mexicans brought into the Burley area in spring 1943, and the German and Italian prisoners of war who were brought to work in the area beginning in spring 1944 (Stene, 1997; Jaehn, 2000).

Long-term departure or “relocation” from Minidoka was encouraged early on but was generally slow until April 1943 (Figure 5.23). From then until the August 1945, relocation increased but did so in a seasonal pattern. The peaks typically occurred in March, April, and May while the lows occurred in October, November, and December. The peaks and lows may have been associated with employment opportunities. Ninety-four evacuees relocated in 1942, 1,799 in 1943, 1,992 in 1944, and 7,483 in 1945 (U.S. War Relocation Authority, 1946). Minidokans relocated to 36 of the 48 states plus Alaska and Hawaii (Figure 5.24). The initial movement out of the center was to nearby cities—especially Salt Lake City and Denver. Later, Chicago became a primary destination (McLaughlin, 1945). Once the West Coast Exclusion Order was lifted in January 1945, it is likely that Seattle and Portland became main destinations. Ultimately, evacuees most commonly relocated to Washington state (3,370), Idaho (2,047), Oregon (1,587), Illinois (1,162), and Utah (709) (McLaughlin, 1945).

Minidoka had the highest number of military volunteers (219) of any of the centers. Another 375 Minidokans were drafted into the armed services. Interestingly, Minidoka also had a relatively high number of Selective Service violations. Forty men were charged because they refused to report for their physical exams although resistance was not organized (U.S. War Relocation Authority, 1946; Muller, 2001). Many of the center’s soldiers became part of the famous 442nd Regimental Combat Team, a much decorated unit noted for bravery, success in battle, and high casualties in the European Theater of Operations (Yamaguchi, 1989). Of the ten relocation centers, Minidoka had the highest numbers of casualties with 34 killed, three missing in action, and 91 wounded (U.S. War Relocation Authority, 1946).

Other Relocation Centers. Minidoka interacted with the other nine relocation centers through the transfers of evacuees and the exchange of goods. Unlike most other relocation centers, Minidoka did not compete in sports with other centers.
early 270 Bainbridge Island, Washington Japanese Americans who were initially evacuated to the Owens Valley Reception Center (later became the Manzanar Relocation Center) were moved to Minidoka in early 1943 because Minidoka was closer to Washington state and because of conflicts with California evacuees at Manzanar (Burton and Farrell, 2001; Burton et al., 2002). A total of 335 Minidokans were transferred to Tule Lake because they or other members of their family answered “no” to questions 27 and 28 on the “loyalty questionnaire” (Appendix C). Minidoka, in turn, received 1,643 Tule Lake evacuees in late summer/early fall 1943 who were deemed “loyal” because of their responses on the “loyalty questionnaire.” Thirty-two Minidokans were repatriated to Japan in September 1943 (U.S. War Relocation Authority, 1946).

The Tule Lake Relocation Center provided school desks and chairs from its furniture manufacturing facility (Kleinkopf, 1942). Minidoka also received produce, including turnips, carrots, and beets, from Tule Lake (Staff, 31 October 1942). Shingiku seed was obtained from Gila River Relocation Center. In turn, Minidoka shipped daikon seed to Tule Lake in 1944. While the agriculture records show that Minidoka shipped surplus produce to other centers, it is unclear from these documents which centers received this produce (Rice and Beebout, 1946).
Figure 5.24. Geography of Minidoka indefinite leaves (i.e., relocations), August 1942-October 1945. Data from McLaughlin (1945).
Closing Minidoka and Another Relocation

Public Proclamation #21 on 17 December 1944 ended the West Coast Exclusion Order that had been in effect since 1942. As of 2 January 1945, evacuees could begin moving back to the West Coast, including the Seattle and Portland areas. All relocation centers were slated to be closed by the end of 1945.

Initially, the closing date for Minidoka was 15 November 1945 (Kleinkopf, 1945). On 1 June 1945, over 5,600 evacuees remained in Minidoka (Figure 5.25). By VJ (i.e., Victory over Japan) day on 14 August 1945, more than 3,200 evacuees remained in the center (U.S. War Relocation Authority, 1946). Closing the dining halls in blocks speeded up the process of relocation as they were the social centers of the block communities. The WRA provided evacuees with $25, $3 per diem as they traveled, and a train ticket (Hall, 1987). Families were also eligible for other assistance plus up to $300/family to purchase furnishings for their new homes (Kleinkopf, 1945; Hall, 1987). However, nearly 1,500 evacuees remained until the last month of the center’s existence (U.S. War Relocation Authority, 1946). Many of those remaining in the final months of the center were the elderly and the very young (Yamaguchi, 1989). All evacuees were moved out of the center by 23 October 1945 (Kleinkopf, 1945). Interestingly, in the closing days, German prisoners of war from the Rupert, Idaho Prisoner of War Camp were employed at the center (Kleinkopf, 1945). Yasusuke Kogita, creator of one of Minidoka’s “most spectacular gardens”, hired a trucking company to haul all of the basalt boulders and many of the carefully tended plants in his garden back to Seattle where he recreated the garden in front of his small hotel in Seattle’s International District (Tamura, 2002).

Impacts of Minidoka on Today’s South Central Idaho Landscape

Evacuee Dispersion. The 1950 census showed that 37 Japanese Americans were living in Jerome County as compared to the 36 that lived there in 1940. Similar small increases were seen in all adjacent counties. The overall Idaho Japanese American population increased from 1,191 to 1,973 between 1940 and 1950 (U.S. Bureau of the Census, 1942; 1952). Some Minidoka evacuees likely settled in the sugar beet farming communities of Caldwell, Weiser, and Payette on Idaho’s Western Snake River Plain (U.S. War Relocation Authority, 1946). At least 2,000 Japanese Americans lived on the western Snake River Plain in 1946 but the number had dropped to about 1,500 by 1947 (U.S. War Agency Liquidation Unit, 1947). Overall, 3,500 Japanese Americans settled in Idaho in the 1940s but is not clear how many of these were from Minidoka (Hall, 1987). Others settled just across the Snake River in the Oregon communities of Nyssa, Ontario, and Vale (U.S. War Relocation Authority, 1946). Many of Minidoka’s residents wanted to return to the Seattle and Portland areas (Staff, 23 December 1944). Apprehension about their reception likely delayed the return of many (Hall, 1987). However, nearly 60% of Seattle’s 1940 population had returned by 1947 (U.S. War Agency Liquidation Unit, 1947, p. 255-256). It is unclear how many returned to the Portland, Oregon area.
Land Dispersion. Minidoka Relocation Center returned 30,000 acres of land (including the farm lands) surrounding the main part of center to the U.S. Bureau of Reclamation in January 1945 (Staff, 3 February 1945). Following closure of the center, the main part of the center reverted to the Bureau of Reclamation on 9 February 1946 (U.S. National Park Service, 2006). The first drawing for former center lands occurred in February 1947 with 43 farm units going to World War II veterans. Another 46 small farms were allotted by lottery in 1949 (Burton et al., 2002).

Infrastructure Dispersion. The recreation halls were sold and removed beginning in September 1945 for $1,000-1,100 each (Kleinkopf, 1945). Scrap lumber and furniture was sold by the truckload to area residents (Kleinkopf, 1945). Each “homesteader” on the former center lands was entitled to two entire barracks plus several smaller outbuildings and various surplus items from the center (Schrontz Roberts-Wright, 1994; U.S. National Park Service, 2006). Initially, the 1947 farm lottery winners lived in Block 30 of the relocation center, sharing common bathroom, shower, and laundry facilities until they were able to move barracks to their own homesteads (Figure 5.15) (Burton et al., 2002). The Bureau of Reclamation gave some of the surplus buildings and equipment to nonprofit groups such as schools, churches, and public agencies (Stene, 1997).
The barracks and various other center buildings ended up being the houses, garages, barns, machine sheds, and various outbuildings of the homesteaders (Schrontz Roberts-Wright, 1994). One can see the former center buildings at farms throughout the Hunt Area, especially along Hunt Road (Claire Ricketts, oral communication, 14 June 2003) (Figure 5.26). Center buildings were moved to Jerome where a former mess hall now serves as the Veterans of Foreign Wars hall (Burton et al., 2002, p. 213). Another mess hall is located at the Jerome Airport and yet another is located at the Jerome County Fairgrounds. Some of the barracks ended up as far away as Twin Falls where they were remodeled into motels (Virginia Ricketts, 14 June 2003, oral communication). Those buildings not trucked from the site was likely burned, buried, or pushed aside.

Remains of Minidoka. Burton and Farrell (2001) and Burton et al. (2002) describe in detail the nature of Minidoka as of about 2000. Along with two students, I also visited the area in June 2003. Much remains at the center but this evidence is scattered about a large area. The most prominent and distinguishing feature is the stone guard house and stone chimney of the former waiting room at the center entrance (Figure 5.27).

Little remains of the evacuee residential area. Once buildings and foundations were removed, this area was farmed (Figure 5.28). Only the foundation of the sewage treatment plant remains within presently cultivated lands (Burton et al., 2002).

Figure 5.26. Former Minidoka Relocation Center barracks turned into a house on a farmstead in the Hunt area. Author photograph, June 2003.
Figure 5.27. Remains of entrance station at Minidoka Relocation Center. Author photograph, June 2003.

Figure 5.28. Farmland in mid-distance on former evacuee residential area, Minidoka Relocation Center. Land in foreground is not farmed because of shallow soils and/or difficulty getting water to site. View east from the uplands near the western boundary of the former camp. Author photograph, June 2003.
The most intact portion of the center are the former administration, staff housing, warehouse, and motor pool areas (Figure 5.15). Concrete slabs, foundations, footings, manholes, stone-lined walkways, and scattered trees remain in this area (Figure 5.29). A root cellar remains (Figure 5.30) as does the depression of one of the center’s swimming holes (Burton et al., 2002). The walkways and decorative boulders of the former center entrance garden also remain (Figure 5.31). In the surroundings that were once center farmland, evacuee constructed irrigation canal drops are still in use.

Idaho’s Central Snake River Plain Today. The central Snake River Plain today is a land of contrasts, especially when seen on a hot summer day. Roughly 40-50% of the former center lands are currently irrigated and occupied by farmsteads. These irrigated areas are literal “oases” with lush, green crops, rows of tree windbreaks, and farmsteads including houses with lawns. The farmland of many of these acres was developed by the Japanese Americans in 1942-1945. New roads were built to serve the homesteaders. Over time, farmers on the irrigated lands have raised sugar beets, beans, alfalfa, hay, various small grains, canola, potatoes, beef cattle, and dairy cattle on the lands that were once part of the Minidoka Relocation Center (Schrontz Roberts-Wright, 1994). The remaining unfarmed portions of the former center are mantled by a brown and dry covering of sagebrush and grasses. Black basalt, visible because of a thin soil covering, often pokes out at the surface in these areas. Cattle graze these unfarmed areas when

Figure 5.29. Overgrown concrete slab in former administration area. Also, note trees from the center in the background. View northeast. Author photograph, June 2003.
Figure 5.30. Remains of the large root cellar, Minidoka Relocation Center. Author photograph, June 2003.

Figure 5.31. Remains of entrance garden, Minidoka Relocation Center. View along overgrown walkway. Note boulders of former garden in left middle distance. Also, note entrance station in background. Author photograph, June 2003.
their grasses are briefly lush in the spring months. The oases and the associated human settlement depend on irrigation water from the upper Snake River. The flows of the upper Snake, in turn, depend on the climate of a large area including western Wyoming and eastern Idaho, and on human uses of this water upstream. The flows of the Snake River upstream of Milner Dam are now fully-appropriated, mostly for agricultural purposes, thus little water is left in the river for other uses. With other interests, including fish and wildlife, recreation, and public health, increasingly expecting a portion of this water, one wonders what this landscape will look like in another 50 years (Wulfhorst and Glenn, 2002).

The estimated Jerome County population as of 2005 was 19,638, an increase of 7.1% since the 2000 census. This rate of growth is 3.3% less than the overall growth of Idaho (U.S. Census Bureau, n.d.). Jerome and Twin Falls are the service centers for the area. The human population density in this largely agricultural county is 30.6 people/mi² as compared to the state average of 15.6 people/mi². The population of the area is more than 97% white but more than 23% of those classified as white are Latinos (U.S. Census Bureau, n.d.).

Efforts at recognition, protection, and enhancement of the former site of the Minidoka Relocation Center have been slow but ultimately, effective. In August 1979, a six acre parcel including the former center entrance was listed on the National Register of Historic Places. The site became an Idaho Centennial Landmark in May 1990. The ceremony celebrating this designation dedicated new commemorative plaques as well as sidewalks and a parking area at the site of the former center entrance. In January 2001, a nearly 73 acre parcel was designated as the new Minidoka Internment National Monument. This parcel includes not only the former entrance but land extending to the former center’s root cellar (Figure 5.15). The purpose of the National Monument is to provide opportunities for public education and interpretation of the evacuation and detention of Japanese Americans during World War II. The General Management Plan completed in November 2006, among other things, seeks to stabilize and protect existing center remains such as the former root cellar as well as acquire and restore an entire residential block on site (U.S. National Park Service, 2006). The land occupied by the National Monument continues to be held by the U.S. Bureau of Reclamation. The monument is currently threatened by a proposal to build a confined animal feedlot for approximately 10,000 head of cattle one mile upwind of the site (Ron James, written communication, 16 February 2007). House Resolution 161 introduced in early 2007, would expand the boundaries and redesignate the national monument to be the Minidoka National Historic Site (Congressional Budget Office, 2007).

A historical marker and interpretative sign is located on Idaho Highway 25 at the turnoff to the former center. The Jerome County Historical Museum in Jerome has an ongoing exhibit and various resources related to the center. The Idaho Farm and Ranch Museum located just north of Twin Falls has two Minidoka barracks, one of which is used to show the history of the Minidoka Relocation Center.
Acknowledgments

Longtime residents Claire and Virginia Ricketts told students Paul Blanton and Zak Steigmeyer, and I about the Hunt area during World War II, and patiently answered our questions. Peg Roberson opened the Jerome County Historical Museum on a Sunday morning so we could explore the wealth of information there. Twin Falls teacher Ron James showed us around the former center site. Blackfoot, Idaho resident Hero Shiosaki told us about life as a Japanese American during World War II in the Idaho. Paul Blanton and Eli Asher tracked down information while Carla Jellum and Jared Treser created most of the maps and other figures in this chapter. Ron James, Nancy Lillquist, Robert Sims, and Morris Uebelacker critiqued an earlier version of this chapter. Thank you all.

References

Staff, 1942: Vegetables Arrive From Tule Lake. *Minidoka Irrigator*, 31 October, p. 3.

Staff, 1942: Adult Classes Ready to Start: Schedule Based on Survey Returns. *Minidoka Irrigator*, 2 December, pp. 3.

Staff, 1943: Gravel Walks Laid by Hospital, Civic Center. *Minidoka Irrigator*, 13 January, pp. 3.

Staff, 1943: Plants in Hotbeds are Transplanted: Davidson Voices Hope for Four Hundred Acres of Vegetables Planted by End of June. *Minidoka Irrigator*, 19 June, pp. 3.

Staff, 1943: Cooperative Has Modest Beginning. *Minidoka Irrigator*, 25 September, p. 3.

Staff, 1944a: Girl Scouts Play Prominent Role in Center Activities. *Minidoka Irrigator*, 16 September, p. 4.

Staff, 1944b: Buddhist, Catholic, Protestant Churches Active in Minidoka. *Minidoka Irrigator*, 16 September, p. 3.

Staff, 1944: 10,000 Pounds of Mochi-gome Here. Minidoka Irrigator, 16 December, p. 1.

