1. Course Title:

General Physics III
PHYS 183 – 4 Credits
4 hr Lecture per week
MET Core Program Requirement
Prerequisite: PHYS 181. Pre- or co-requisite, MATH 173. Must be taken concurrently with 183LAB
This is a basic Science content course under ABET Criterion 5

2. Faculty Member Information:

 Instructor: Mike Jackson
 Office: Lind 201A
 Phone: 509-963-2914
 E-mail: jacksonm@cwu.edu

3. Course Description:

 Lecture: Topics in physics including electromagnetic fields and optics. Analyzing physical systems using algebra, trigonometry and calculus

4. Textbook and other required materials for the course:

 Physics for Scientists and Engineers, by R. Knight
 Mastering Physics (Required)
 Lecture Notes can be purchased at the Wildcat Shop

5. Specific Learner and Expressive Outcomes and Assessment Strategies:

<table>
<thead>
<tr>
<th>ABET Outcome Criteria #</th>
<th>Learner Outcomes</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. To demonstrate knowledge and understanding of the fundamental concepts in electricity and magnetism (charge, electric field, electric potential, capacitance, resistance, magnetism, and electromagnetic induction).</td>
<td>The student will complete a written test and perform assignments.</td>
</tr>
<tr>
<td></td>
<td>2. To demonstrate an ability to effectively apply this knowledge in solving problems.</td>
<td>The student will complete a written test and perform assignments.</td>
</tr>
<tr>
<td></td>
<td>3. To demonstrate enhanced quantitative reasoning skills and mathematical analysis</td>
<td>The student will complete a written test and perform assignments.</td>
</tr>
</tbody>
</table>

6. Course Topics and Schedule:
7. Grading:

Grading

<table>
<thead>
<tr>
<th>Course</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam I</td>
<td>23%</td>
</tr>
<tr>
<td>Exam II</td>
<td>23%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>24%</td>
</tr>
<tr>
<td>Quizzes</td>
<td>15%</td>
</tr>
<tr>
<td>Mastering Physics</td>
<td>15%</td>
</tr>
</tbody>
</table>

The A, A–, B+, B, B–, C+, C, C–, D+, D, D– and F grading system will be used.

8. ADA Statement:

Students who have special needs or disabilities that may affect their ability to access information and or material presented in this course are encouraged to contact me or Robert Harden, ADA Compliance Officer, Director, ADA Affairs and Students Assistance on campus at 963-2171 for additional disability related educational accommodations.

Prepared by Roger Beardsley June 22, 2009
1. Course Title:

General Physics Laboratory III
PHYS 183L – 1 Credit
2 hr Lab per week
MET Core Program Requirement
Prerequisite: Must be taken concurrently with PHYS 183
This is a basic Science content course under ABET Criterion 5

2. Faculty Member Information:

 Instructor: Bruce Palmquist
 Office: SCI 107C
 Phone: 509-963-2728
 E-mail: palmquis@cwu.edu

3. Course Description:

Laboratory Investigation of topics in physics including electromagnetic fields and optics

4. Textbook and other required materials for the course:

Physics for Scientists and Engineers, by R. Knight

5. Specific Learner and Expressive Outcomes and Assessment Strategies:

<table>
<thead>
<tr>
<th>ABET Outcome Criteria #</th>
<th>Learner Outcomes</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. To demonstrate knowledge of key ideas associated with the topics listed in the PHYS 183 syllabus through oral and written communication</td>
<td>The student will complete a written test and perform assignments.</td>
</tr>
<tr>
<td></td>
<td>2. Appropriately apply mathematics to analyze physical systems.</td>
<td>The student will complete a written test and perform assignments.</td>
</tr>
<tr>
<td></td>
<td>3. Demonstrate through oral and written communication proficiency and prudence in the use of the scientific method including designing labs, making hypotheses, and critiquing proposals.</td>
<td>The student will complete a written test and perform assignments.</td>
</tr>
</tbody>
</table>
6. Course Topics and Schedule:
Lab Structure: This course is not set up like most introductory labs in that there will be no instructor-written labs or step-by-step procedures for you to follow. The general idea is for students to get experience designing labs, making hypotheses, and critiquing proposals as well as learning physics. The instructor will pick four main topics that would be investigated over a two week cycle. The first week of the cycle would be open ended with the instructor acting as a consultant. You and your partners would explore the topic with the goal of developing a basic lab outline and a hypothesis to present to the class. At the end of lab period, each group would present their one page proposal to the class. The class will vote. Whichever lab proposal gets the most votes would be the one that every group does the next week. Week two of the process, all groups would do the winning lab but have the option to modify it as they want. The lab handout would be the winning proposal from week one of the two week cycle. The first one or two weeks of the quarter will be organized to help you acquire the skills for creating your own labs. Your group designs each lab proposal in consultation with the lab instructor. The job of the lab instructor is provide guidance when you are stuck and to give you feedback on your lab work. S/he will not tell you specifically what to do. You must take responsibility for learning the concepts in lab. Many students underestimate their ability to ask and answer questions about a system or phenomenon. You have the ability to succeed in this lab. See "Hints for productive experiments" for more information.

7. Grading:

Weekly Grades for each Group:
- Week 1: Group Proposal (9 pts) + Average of Group’s Individual Lab notebooks (1 pt)
- Week 2: Recorder Lab notebook (9 pts) + Average of Group’s Individual Lab notebooks (1 pt)

The A, A−, B+, B−, C+, C−, D+, D, D− and F grading system will be used.

8. ADA Statement:

Students who have special needs or disabilities that may affect their ability to access information and or material presented in this course are encouraged to contact me or Robert Harden, ADA Compliance Officer, Director, ADA Affairs and Students Assistance on campus at 963-2171 for additional disability related educational accommodations.

Prepared by Roger Beardsley June 22, 2009