1. Course Title:

Technical Dynamics
MET 327 & MET 327L – 4 Credits Lecture & 1 Credit Lab
MET Core Program Requirement
Prerequisite: IET 311 or permission of instructor, corequisite, MET 327LAB
This is a Technical content course under ABET Criterion 5

2. Faculty Member Information:
 Instructor: Roger Beardsley
 Office: Hogue 302
 Phone: 509-963-1596
 E-mail: beardslr@cwu.edu

3. Course Description:
Lecture Description: rectilinear and curvilinear motion, rotational kinematics, work, energy and power, linear impulse and momentum, angular impulse and momentum, rigid body motion, relative motion and vibrations
Lab Description: Practical application of dynamical systems including usage of state-of-the-art instrumentation and data recording systems.

4. Textbook and other required materials for the course:

5. Specific Learner and Expressive Outcomes and Assessment Strategies:

<table>
<thead>
<tr>
<th>ABET Outcome Criteria #</th>
<th>Learner Outcomes</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a,b,f 9b,f,g</td>
<td>1. demonstrate the ability to model dynamic physical systems</td>
<td>Assignments, exams, and lab reports.</td>
</tr>
<tr>
<td>3a,b,f 9b,f,g</td>
<td>2. analyze systems to predict motion of a point or a rigid body</td>
<td>The student will complete a written test and perform assignments.</td>
</tr>
<tr>
<td>3c,d,e,f 9e,n</td>
<td>3. demonstrate the ability to select proper instrumentation to support experiments and have the ability to calibrate various sensors and connect sensors to data acquisition systems.</td>
<td>laboratory experiments and reports.</td>
</tr>
<tr>
<td>3a,b,c,g,9e,f,g</td>
<td>4. Students will perform computerized data analysis and be able to present and explain experimental results with clarity.</td>
<td>This shall be assessed through laboratory experiments, written and oral reports.</td>
</tr>
<tr>
<td>3g</td>
<td>5. Students will demonstrate the ability to write various types of test reports common in the engineering field.</td>
<td>This shall be assessed through laboratory written reports.</td>
</tr>
</tbody>
</table>
6. Course Topics and Schedule:

 Introduction & Overview Chapter 12
 Lab Intro: Measurements
 Kinematics of a Particle Chapter 12
 Force and Acceleration Chapter 13
 Lab 1 Laser-timed Velocity Sled
 Work & Energy Chapter 14
 Impulse & Momentum Chapter 15
 Lab 2 Cam Motion Lab
 Review Planar Kinematics & Kinetics of Particles
 Exam #1; Chapter 12, 13, 14 & 15
 Lab 3: Centripetal Acceleration
 Kinematics of a Rigid Body Chapter 16
 Force & Acceleration Chapter 17
 Lab 4 Bounce Lab (restitution)
 Work & Energy Chapter 18
 Impulse & Momentum Chapter 19
 Lab 5: Impulse of Model Rocket Engine
 Review Planar Kinetics & Kinematics of Rigid Bodies
 Exam #2; Chapter 16, 17, 18 & 19
 Vibrations & Resonance Chapter 22
 Lab 6: Vibrating Beam Analysis Lab
 Final Exam - Comprehensive

7. Grading: HW / Quizzes (11+) 30%
 Exams & Final (3) 40%
 Lab Reports. (8) 20%
 Participation/involvement (30) 10% (weightings are approx)
A(92-100), A-(90-92), B+(88-90), B(82-88), B-(80-82), C+(78-80), C(72-78), C-(70-72), D+(68-70),
D(62-68), D-(60-62),

8. ADA Statement:

 Students who have special needs or disabilities that may affect their ability to access information
 and or material presented in this course are encouraged to contact me or Robert Harden, ADA
 Compliance Officer, Director, ADA Affairs and Students Assistance on campus at 963-2171 for
 additional disability related educational accommodations.

Prepared by Roger Beardsley June 24, 2009