Welcome to Graduate School!
You are embarking on one of the most exciting times of your career. Unlike undergraduate study where you had less freedom to determine your curriculum, in graduate school you design most of your own course of study and research. You will learn to become an authentic scientist – how to conduct science and how to disseminate your work.

Graduate school is fun and exciting; it can also be stressful and difficult. We have compiled this handbook to help make your progress smooth and less stressful. Below you’ll find some “nuts-and-bolts” information to guide you through the hurdles of graduate school, and some advice that comes from our experience as former graduate students and current graduate advisors. This guide is not intended to be comprehensive, but rather to complement the guidelines set forth by the graduate office. Consult the graduate catalog for additional details about graduate school at CWU.

Why Pursue a Master’s Degree?

While many universities discourage students from seeking a master’s degree, and prefer them to concentrate their efforts on pursuit of a Ph.D., CWU has developed a strong program at the master’s level. Why do we believe so strongly in master’s degrees? A master’s program provides training and expertise for those needing a terminal degree for entry-level positions in government, industry, and education. It serves other students by preparing them for the Ph.D. degree and careers in biological research. Obtaining a master’s degree before a Ph.D. broadens your perspective by diversifying your exposure to new ideas, provides experience in research and writing, and provides what is likely your first opportunity to publish a paper.

Timeline
You are strongly encouraged to complete your master’s degree within two years. The timetable outlined below suggests steps to take each quarter in order to achieve this.

<table>
<thead>
<tr>
<th>Year</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>• establish your committee</td>
<td>• decide thesis topic</td>
<td>• collect preliminary data</td>
<td>• collect data</td>
</tr>
<tr>
<td></td>
<td>• design Course of Study</td>
<td>& title</td>
<td></td>
<td>• conduct preliminary</td>
</tr>
<tr>
<td></td>
<td>• BIOL 501</td>
<td>• BIOL 502</td>
<td>data</td>
<td>analyses</td>
</tr>
<tr>
<td></td>
<td>• develop research</td>
<td>• present proposal to</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>proposal</td>
<td>department</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• submit written</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>thesis proposal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>• finish data collection</td>
<td>• specialty (oral) exam</td>
<td>• final draft of thesis</td>
<td>• final revisions</td>
</tr>
<tr>
<td></td>
<td>• analyze data</td>
<td>• complete data analysis</td>
<td>• prepare oral defense</td>
<td>• submit for publication</td>
</tr>
<tr>
<td></td>
<td>• begin writing thesis</td>
<td>• BIOL 602</td>
<td>• apply for graduation</td>
<td></td>
</tr>
</tbody>
</table>

Please recognize that schedules and sequences of events will vary depending on the student and the nature of their graduate program. Please consult with your advisor.
Important Milestones Checklist

This checklist will help you meet deadlines for submitting required forms. You are responsible for arranging all meetings with your advisor and committee members, and for meeting these deadlines.

<table>
<thead>
<tr>
<th>Form</th>
<th>Deadline</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>__ Course of Study Form</td>
<td>End of 1st quarter</td>
<td>Meet with your advisor to form a committee that will review your transcripts and test scores to identify weaknesses and choose appropriate coursework. IMPORTANT: failure to meet this deadline may result in dismissal from the program.</td>
</tr>
<tr>
<td>__ Graduate Committee and Option Approval Form</td>
<td>End of 2nd quarter</td>
<td>Meet with your committee and decide upon a topic and title of your proposed thesis research project.</td>
</tr>
<tr>
<td>__ Research Proposal</td>
<td>End of 2nd quarter</td>
<td>Present written thesis research proposal to your committee.</td>
</tr>
<tr>
<td>__ Specialty Exam (oral)</td>
<td>Quarter before graduation</td>
<td>Exam will cover topics in your area of study and will be administered by your committee and other interested faculty.</td>
</tr>
<tr>
<td>__ Application for Final Examination</td>
<td>3 wks before final exam during quarter of graduation</td>
<td>This form must be completed and filed in the Graduate Office. The exam is essentially a defense of your thesis research, consisting of a public seminar presentation, followed by an oral exam administered by the committee.</td>
</tr>
<tr>
<td>__ Application for Graduation</td>
<td>Beginning of final quarter</td>
<td>This form must be filed in the Graduate Office.</td>
</tr>
</tbody>
</table>

Graduate Committee

One of the first items of business is to select your committee. The committee helps you design a course of study, provides feedback on your thesis research design, administers the specialty written and final oral exams, and provides guidance on and approves your thesis. The committee consists of a committee chair (your advisor or major professor) and at least two other members. While these often are Biology faculty, faculty members from other departments may also serve on committees. Adjunct faculty (including researchers outside of CWU) may also serve on committees (but not as committee chairs) if approved by the Dean of Graduate Studies.
You and your advisor should work together to select a committee. Choose committee members whose expertise complements one another. Breadth is important for maximizing feedback on your research. Perhaps more importantly, pick faculty who will be interested in your work. Your committee is integral to your success in graduate school; it is very important that you feel comfortable with each member to seek advice. Make a concerted effort during your first quarter to get to know the faculty, keeping in mind their suitability as potential committee members. Stop by and chat about research and teaching interests. Ask them for copies of their publications, and about important books and papers that have influenced them. Biology Faculty are listed below; professors in other departments at CWU and professionals outside of CWU may also serve on committees (please check with your advisor or the Graduate Coordinator to confirm the eligibility of potential committee members).

Biology Faculty Members

<table>
<thead>
<tr>
<th>Name</th>
<th>Research Interests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay Arango</td>
<td>Stream ecology; how humans modify the uptake and transformation of nutrients in stream ecosystems</td>
</tr>
<tr>
<td>Daniel Beck*</td>
<td>Ecology, behavior, and physiology of reptiles in the Pacific NW, southwestern USA, and western Mexico</td>
</tr>
<tr>
<td>April Binder</td>
<td>Molecular biology, reproductive and developmental biology, gene expression in mouse ovaries</td>
</tr>
<tr>
<td>Lucy Bottcher</td>
<td>Behavioral ecology, tropical biology; feeding behavior, performance and ecology of anurans</td>
</tr>
<tr>
<td>Lucinda Carnell*</td>
<td>Regulation of behavior in the nematode, C. elegans</td>
</tr>
<tr>
<td>Tom Cottrell*</td>
<td>Plant ecology in areas of fire disturbance, rare plant habitats</td>
</tr>
<tr>
<td>David Darda*</td>
<td>Evolutionary vertebrate morphology, herpetology</td>
</tr>
<tr>
<td>Jennifer Dechaine*</td>
<td>Evolutionary Ecology and Genetics of Plants</td>
</tr>
<tr>
<td>Raymon Donahue</td>
<td>Plant ecophysiology</td>
</tr>
<tr>
<td>Blaise Dondji*</td>
<td>Cellular immune responses to hookworm and Leishmania infections</td>
</tr>
<tr>
<td>Kristina Ernest*</td>
<td>Community ecology, ecology of small mammals, ecological connectivity, conservation biology</td>
</tr>
<tr>
<td>Jason Irwin*</td>
<td>Physiological ecology of cold tolerance and seasonal patterns of energy use in insects, amphibians, and other ectotherms</td>
</tr>
<tr>
<td>Paul James*</td>
<td>Fish ecology, stream ecology</td>
</tr>
<tr>
<td>James Johnson*</td>
<td>Mycology, molecular systematics, molecular ecology and amphibian disease</td>
</tr>
<tr>
<td>Holly Pinkart*</td>
<td>Microbial ecology and physiology, microbes of saline alkaline lakes</td>
</tr>
<tr>
<td>Name</td>
<td>Research Interests</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>Mary Poulson*</td>
<td>Plant Physiology, photosynthesis, and photosynthetic responses to the environment</td>
</tr>
<tr>
<td>Ian Quitadamo*</td>
<td>Neuro-cognitive basis of critical thinking, assessment of science learning</td>
</tr>
<tr>
<td>Wayne Quirk*</td>
<td>Sensation and perception, neuroscience</td>
</tr>
<tr>
<td>Linda Raubeson*</td>
<td>Conifer phylogeny, chloroplast genome evolution, conservation and ecological genetics of local plants</td>
</tr>
<tr>
<td>Alison Scoville*</td>
<td>Ecological and evolutionary genomics, rapid evolution and conservation biology</td>
</tr>
<tr>
<td>Gabrielle Stryker*</td>
<td>Protozoan parasites, parflagellar rod proteins in kinetoplastids, cell motility, immunology</td>
</tr>
<tr>
<td>Lixing Sun*</td>
<td>Ecology and evolution of animal behavior (especially communication systems); chemical ecology</td>
</tr>
<tr>
<td>R. Steven Wagner*</td>
<td>Amphibian decline, genetics, herpetology, road ecology, conservation biology, primate behavior</td>
</tr>
<tr>
<td>Robert Weaver</td>
<td>Behavioral and chemical ecology of reptiles and amphibians</td>
</tr>
</tbody>
</table>

* denotes Graduate Faculty status; others may serve on committees (please ask them or your advisor for details)

Please see Biology graduate program website for more details on faculty research interests.

Professional Behavior

Psychological issues, not intellectual deficiencies, are the most common stumbling block in graduate school. Keep yourself engaged, motivated, and on-task. Take advantage of this opportunity to develop colleagues – your fellow graduate students, faculty, and professional biologists in your area of interest. They will help keep you excited about scientific research. Always follow through on commitments, however small, that you make with your committee members and other colleagues. Schedule regular meetings with your advisor and keep her/him up to date with your progress, concerns, and any difficulties you are having. Keep in mind that your advisor (and your committee) is here to help you. They want to see you succeed almost as much as you do. If you are having problems, let your advisor know early on; he/she will appreciate your candor and likely have some good suggestions for helping solve your difficulties.

To gain the respect of your committee, keep them informed of what you are doing and progress you are making. But don’t bug them—be an interesting presence, not a pest. Anticipate personality problems. If you find that you don’t get along with your major professor or other committee members, get them changed – early on. Act professionally in the scheduling of and participation in committee meetings. Never underestimate how difficult it can be to get three or four busy people together at one time for an hour. Set meetings up in advance, giving each committee member sufficient notice so you can find a mutually agreeable time. Reserve a room. Shortly before the meeting, remind each member of the time, date, and room of the meeting. Committee meetings are for you. Know ahead of time exactly what you want to get out of the
meeting and get feedback from your advisor. Write an agenda, and lead the meeting. Take notes on decisions and recommendations made during each meeting.

All graduate students are expected to attend department-sponsored seminars and defense seminars of other graduate students. These opportunities will broaden and deepen your scientific background, and help you become part of the scientific community. Be sure to check the schedule for the Natural Science Seminar Series each quarter and plan to attend these.

Coursework

As you plan your course of study, be sure to refer to the following general policy on required and allowable credits. Keep in mind that, in addition to courses offered in the Biology Department, other departments and programs on campus (e.g., Geography, Geology, Psychology, Resource Management, Anthropology, Chemistry) may offer courses relevant to your study.

45 credits beyond the B.S./B.A. degree are required for the M.S. Required courses include:
- BIOL 501 -- Research Methods and Techniques, 4 credits
- BIOL 502 -- Research Proposal Presentations, 2 credits
- BIOL 505 -- Current Topics in Biology, 6 credits (2 credits each; take 3 times)
- BIOL 595 -- Graduate Research, 10 credits. (A maximum of 10 can be counted toward the 45 credits required; you can take more as your advisor/committee approves, but only 10 will count on the course of study form).
- BIOL 602 -- Research Presentations, 2 credits
- BIOL 700 -- Master’s Thesis, 6 credits
- Electives selected by advisement, 15 credits

In addition, please note:
- Any courses below the 400 level that you take (either by choice or required by the committee) cannot be counted toward the required 45 credits.
- Courses at the 400-level may be accepted for credit toward your degree if they are taken after you are admitted to the master’s program and are approved as part of your official course of study. Graduate students are expected to perform at a high level, while completing requirements additional to those expected of undergraduates in the course.
- No more than 9 graduate credits can be transferred from another school.
- Students with assistantships must take at least 10 credits each quarter (BIOL 595 credits can be used to keep fulfill this requirement).
- You must be enrolled for at least 2 credits during the quarter in which you graduate.
- Credit toward the graduate degree will not be accepted for courses in which a grade lower than C is earned.
- Grades for all courses included on the Course of Study must average at least 3.0, where the cumulative grade point average is calculated on all courses taken after admittance into a graduate program, whether part or the approved Course of Study or not. A graduate student whose cumulative grade point average falls below 3.0 at the end of any quarter will be placed on academic probation for the next academic quarter. A student on
probation may not hold a graduate assistantship. If the cumulative grade point average remains below 3.0 after a second consecutive quarter, the student will not be eligible to continue in the Master’s program.

Master’s Research Proposal

A major part of graduate school is to conceive, design, implement, and summarize in written form original, independent research. Your proposal is the first step in this process. Focusing on an exciting research question is the primary goal of your first quarter, so plan your time accordingly. Realize that your research will shape you as a scientist; therefore, it is absolutely essential that you choose a topic in which you are very interested. The stronger your interest and passion for your research topic, the easier it will be to press forward through any difficulties which may arise.

You will begin the process of developing your proposal during BIOL 501, then write and present your proposal orally in BIOL 502. When preparing to write your proposal, discuss your ideas with other graduate students. Ask them if you can look at their proposals. A 3-ring binder with examples is in the mailroom. Critical elements of a research proposal include:

- Title page – thesis title, your name, advisor’s name, date
- Introduction
 - what you propose to do
 - why it is important
 - how it fits into the broad scheme of knowledge
 - a literature review that substantiates #3
 - a clear statement of your questions/hypotheses
- Methods
 - description of experiments or observations you’ll conduct that will permit you to test your hypotheses
 - how you will analyze your data
- Potential pitfalls and what you’ll do if things go awry
- Timeline of anticipated completion
 - Include preliminary observations/experiments, main data collection periods, data analysis, writing, defense
- Budget (optional, but recommended; will be helpful in planning and when seeking funding)
Graduate Assistantships

Assistantships generally take two forms: teaching assistantships (TA’s) and research assistantships (RA’s). The biology department typically offers a limited number of TA’s to biology graduate students. In some quarters, the department may be able to convert a TA into an RA for one or more students, who apply on a competitive basis. Research Assistantships may also come be available to work with a faculty member on a project funded through a grant.

Teaching Assistantships
These are the more common means by which graduate students keep themselves afloat financially at CWU. While your main purpose in graduate school is to gain experience in research, your acceptance of a TA requires that you become a competent and responsible teacher as well. Some graduate students will relish this opportunity, as they have chosen teaching as their career goal. But even for those who do not foresee teaching in the future, being a TA can be very rewarding. Helping undergraduate students learn more about biology and inspiring them to become scientifically literate is rewarding in itself. In addition, in preparing for teaching you will review much of basic biology and undoubtedly learn quite a bit more biology than you imagined.

Some of your responsibilities as a TA include:
- being available to the instructor from the beginning of the quarter through final exams;
- attending TA meetings throughout the quarter;
- asking the instructor what your responsibilities are for the course you are TA’ing;
- having a thorough understanding of the material students are expected to learn in the course;
- posting your name and office hours on your office door, and keeping your office hours (or posting a note in the rare instances when you cannot be there);
- promptly grading and returning assignments to students;
- keeping accurate records of student grades (check with your instructor); and
- treating students in a professional and courteous manner.

The Office of Graduate Studies and the Department of Biological Sciences periodically hold workshops for teaching assistants (usually in the fall). Be sure that you stay informed as to when these workshops are offered and that you attend them as required.

Research Assistantships
The Biology Department may be able to offer one-quarter RA’s on a competitive basis, depending on funding availability and TA needs of the department. This kind of RA is a CWU graduate assistantship that has been converted from a TA into an RA. Only students who currently hold a TA and have not previously been awarded an RA are eligible to apply. Applications must include (1) a one-page summary of the proposed research for the RA (including a brief introduction to the topic, how the research contributes to the thesis, and a concise description of what the applicant intends to do during the RA period), and (2) a letter of recommendation from the student’s faculty advisor with comments on the academic merit of the application. Applicants are responsible for ensuring that their faculty advisor submits the letter by the deadline (Nov. 1,
Feb. 1, and May 1 for the subsequent winter, spring, and fall quarters, respectively. Decisions will be made based on academic merit, normally within 2-3 weeks after each deadline. At the end of the quarter of the RA, recipients must submit a one-page progress report to the graduate committee.

Research and Equipment Grants

Graduate students may apply for internal (CWU) grants:

- Master’s Research or Creative Activity Fellowship (deadlines Nov. 15 and April 15), up to $700 for research expenses
- Graduate Student Summer Research Fellowship (deadline April 15), $2800 stipend for conducting research
- Travel Grant (for to travel to a conference or meeting to present your work), up to $400 to present your research at a conference

Look for information on the Office of Graduate Studies and Research website: http://www.cwu.edu/masters/graduate-student-funding

Many funding sources outside the university are also available. Check with your committee members, the Biology graduate program website, and on-line searches.

Most funding sources will require research proposals. Your committee chair will need some time, likely at least two weeks, to read the proposal before it is submitted. You may also need approval from the Institutional Animal Care and Use Committee (IACUC) and/or the Human Subjects Review Council (HSRC) to submit with your proposal. Note that it may take these committees two or three weeks to review your proposal. If you are awarded a fellowship or grant, you must acknowledge this support on posters, presentations, and publications that result from your research. Also, many funding sources (including CWU’s Graduate Studies office) require a final report summarizing the work you did. Failure to submit final reports may disqualify you from additional funding.

Conducting Your Research

Plan a schedule and stay on track. You are engaging in an exciting, creative endeavor of your own design—make it fun. Consult frequently with your major professor during this stage; encourage him or her to accompany you into the field or laboratory. Keep reading the literature as much as you can during this stage; it will help keep you excited and motivated. Go to regional meetings; present your preliminary data if possible. Posters are great—good for showing early results and less stressful than oral presentations.

As you carry out your research, it is essential to keep good records of your data. Keep a detailed lab or field notebook, recording all of your methods and results as well as your objectives and interpretations. Don’t run the risk of losing data: make photocopies of your notes periodically, and store these in a separate location from your notebook. There are horror stories of students having all their notes in a backpack that got stolen (from an office, from a vehicle, etc.) – and
having to start from scratch. The same goes for computer files – keep backup documents in separate locations (e.g., pin drives, network server).

Special Note: No human or animal research of any kind may be conducted without obtaining prior approval from the relevant department and university review committees. In the case of research with human subjects, the review is conducted by the Human Subjects Review Council (HSRC), which serves as CWU’s Institutional Review Board (IRB). Research on (non-human) vertebrates is subject to regulation by CWU’s Institutional Animal Care and Use Committee (IACUC), and in some cases also by state and federal permitting agencies such as Washington State Department of Fish & Wildlife and US Fish & Wildlife Service.

Oral Exam

The oral exam, administered by your graduate committee, is usually taken during your 4th or 5th quarter. Its purpose is to assess your grasp of topics in your area of study, and your understanding of how your specialty fits into a larger biological context. Specifics of the oral exam may vary from committee to committee, and different faculty members may stress different points (e.g., one may be interested in your understanding of the historical underpinnings of your specialty, while another may want to see how well you can “think on your feet”). In any case, remember that your committee is on your side during the oral exam – they truly want you to succeed. Talk to them well ahead of time about how you might prepare.

Writing the Thesis

This stage of your degree can be just as exciting as planning your research and collecting the data. It is a time for more intensive reading, organizing your thoughts, and putting your study into the context of what is known about your specialty area. As you enter this phase, never underestimate how much time it takes to write well! A typical thesis goes through 4 to 6 drafts from start to finish; a published paper, several more. Two options are available for the general format of the thesis: traditional master’s thesis and journal-ready format. Please consult with your advisor when deciding which option best suits your needs.

Follow these general steps:

• Make an outline of key points and follow it carefully.
• Write your Methods section as you proceed through your research.
• Make your figures and tables and write your thesis around them. This often means you will work on the Results first, then Introduction and Discussion later.
• Consult writing resources. Read “The Elements of Style” by E.B. White or a similar text before you begin writing and consult it frequently as you write your thesis. Follow the Council of Science Editors (CSE) style manual (Scientific Style and Format: The CSE Manual for Authors, Editors and Publishers); copies are available for checkout from the Biology Stockroom. Write with economy, clarity, and precision: clear writing leads to clear thinking.
• Be sure to refer to the Graduate School’s guidelines for the thesis. They have very exacting expectations of what the final copy of your thesis should look like. Do not take them
Getting Ready to Graduate

All students must report to the Graduate Office for a final evaluation no later than the first week of the student’s final quarter. At this evaluation, candidacy requirements, grade point average, and Course of Study completion are processed. Students must be registered for a minimum of two (2) credits at the university during the quarter in which the degree is to be conferred. Enrollment for this purpose should be completed during the usual pre-registration or registration periods to assure degree conferral. A student who has been approved for the degree list for a particular quarter and does not complete the requirements for degree conferral by the published deadline (two weeks prior to the last day of finals), but who does complete them by the last day of the quarter, will receive the degree the following quarter without further registration.

Thesis Defense

Plan Ahead! Remember that the Application for Final Examination is due three weeks prior to final exam during the quarter of graduation (this form must be completed by you and your committee members and filed in the Graduate Office). Prepare your figures and tables ahead of time. Give your committee members 10-14 days to review drafts of your thesis. How long it takes for them to return it and the quality of their feedback depend greatly on how well you have prepared your thesis. Plan to present your oral defense seminar about 10 days (at the earliest) after you get comments back from your committee (this, of course, depends on how many changes are needed). This means that your committee should get your “penultimate” thesis draft about 3 weeks before your defense. You should give your committee a “final” copy of your thesis, with their earlier comments incorporated, 3 – 4 days before your defense. Practice, practice, practice! As a general rule, give five (yes, 5!) practice presentations before your final defense. Invite your peers (fellow graduate students) to your practice sessions and ask them for constructive feedback.

Logistics: In advance, reserve a room for your defense (ask the department secretary for assistance). Please prepare (or ask the department secretary to prepare) an announcement for your defense, and post it around the department and Science Building at least 5-7 days before your defense. Invite your friends and family!

Publishing your Thesis

Publishing a paper is not as brutal as many think, and can actually be fun! This accomplishment is VERY important if you want a good job or entrance to a Ph.D. program. Dissemination is also one of the responsibilities of being a scientist – it makes your research more worth-while. Because your degree is indirectly (and perhaps directly) subsidized by the public, you should
make your findings available to the public and to other scientists. The thesis alone (considered an unpublished document) does not reach a broad audience, and may be very difficult for many people to access. A publication in a journal receives wider attention and is more readily accessible. Work with your committee chair to discuss possible journals for submitting your thesis research for publication. Discuss authorship early on, and revisit as needed.

Campus Resources

Biology Department
- Office: Science 338
- Website: www.cwu.edu/biology/current-graduate-students
- Staff:
 - Department Chair: Tom Cottrell
 - Secretary Lead: Kari Linnell
 - Secretary: Mari Knirck
 - Graduate Committee Chair/Graduate Coordinator: Jason Irwin
 - Stockroom: Mary Bottcher
 - Stockroom: Jonathan Betz
 - Media Prep: Eric Foss
 - Engineering Technicians: Jeff Wilcox and Emil Babik

Graduate Studies and Research – A wealth of information and guidance, including potential funding sources.
- Office: Barge 305
- Website: www.cwu.edu/masters/

Interactions
In our focus on the biology department, we sometimes forget that there are other excellent departments on this campus with some very fine faculty and students. Take every opportunity to interact with them. Attend the Natural Science Seminars and seminars in Geology, Geography, Physics, Psychology, Chemistry, Anthropology and other departments. Take a GIS or Anthropology course. Go on a Geology fieldtrip. One of the benefits of a university the size of CWU is that it is easy to develop interactions with other departments in the sciences. Such interactions can broaden your perspective and make you a better scientist.